Skip to main content

Role of Caspase, PARP, and Oxidative Stress in Male Infertility

  • Chapter
  • First Online:

Abstract

The etiology and pathogenesis of male infertility remain not well defined. Oxidative stress has been identified as one of the major causes of male infertility. Integrity of the sperm DNA, which could be caused by oxidative stress, also plays an important role in vivo and in vitro male fertility. Poly (ADP-ribose) polymerase (PARP) is a DNA repair enzyme that has been demonstrated in mature spermatozoa and fertile men. PARP becomes activated in an attempt to repair oxidative DNA strand breaks. Higher levels of cleaved PARP (cPARP) have been reported in infertile men. Caspases play an important role in mediating and upregulating apoptosis. The cleavage of PARP by caspase 3 inactivates PARP in two segments and inhibits the function of PARP as a DNA repair enzyme. Therefore, high levels of cPARP may be considered as a new marker of apoptosis in sperm of infertile men. In this chapter, we define the relationship between caspases, PARP, and oxidative stress and their role in male infertility.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Schulte RT, Ohl DA, Sigman M, Smith GD (2010) Sperm DNA damage in male infertility: etiologies, assays, and outcomes. J Assist Reprod Genet 27(1):3–12

    Article  PubMed  Google Scholar 

  2. Agarwal A, Mahfouz RZ, Sharma RK, Sarkar O, Mangrola D, Mathur PP (2009) Potential biological role of poly (ADP-ribose) polymerase (PARP) in male gametes. Reprod Biol Endocrinol 7:143

    Article  PubMed  Google Scholar 

  3. Pasqualotto FF, Sharma RK, Nelson DR, Thomas AJ, Agarwal A (2000) Relationship between oxidative stress, semen characteristics, and clinical diagnosis in men undergoing infertility investigation. Fertil Steril 73(3):459–464

    Article  PubMed  CAS  Google Scholar 

  4. Agarwal A, Makker K, Sharma R (2008) Clinical relevance of oxidative stress in male factor infertility: an update. Am J Reprod Immunol 59(1):2–11

    Article  PubMed  CAS  Google Scholar 

  5. Chiu SM, Xue LY, Friedman LR, Oleinick NL (1995) Differential dependence on chromatin structure for copper and iron ion induction of DNA double-strand breaks. Biochemistry 34(8):2653–2661

    Article  PubMed  CAS  Google Scholar 

  6. Dizdaroglu M (1992) Oxidative damage to DNA in mammalian chromatin. Mutat Res 275(3–6):331–342

    PubMed  CAS  Google Scholar 

  7. Altman SA, Zastawny TH, Randers-Eichhorn L et al (1995) Formation of DNA-protein cross-links in cultured mammalian cells upon treatment with iron ions. Free Radic Biol Med 19(6):897–902

    Article  PubMed  CAS  Google Scholar 

  8. Makker K, Agarwal A, Sharma R (2009) Oxidative stress & male infertility. Indian J Med Res 129(4):357–367

    PubMed  CAS  Google Scholar 

  9. Burkle A (2005) Poly(ADP-ribose). The most elaborate metabolite of NAD+. FEBS J 272(18):4576–4589

    Article  PubMed  Google Scholar 

  10. Jha R, Agarwal A, Mahfouz R et al (2009) Determination of poly (ADP-ribose) polymerase (PARP) homologues in human ejaculated sperm and its correlation with sperm maturation. Fertil Steril 91(3):782–790

    Article  PubMed  CAS  Google Scholar 

  11. El-Domyati MM, Al-Din AB, Barakat MT, El-Fakahany HM, Xu J, Sakkas D (2009) Deoxyribonucleic acid repair and apoptosis in testicular germ cells of aging fertile men: the role of the poly(adenosine diphosphate-ribosyl)ation pathway. Fertil Steril 91(5 Suppl):2221–2229

    Article  PubMed  CAS  Google Scholar 

  12. Said TM, Paasch U, Glander HJ, Agarwal A (2004) Role of caspases in male infertility. Hum Reprod Update 10(1):39–51

    Article  PubMed  CAS  Google Scholar 

  13. Chowdhury I, Tharakan B, Bhat GK (2008) Caspases—an update. Comp Biochem Physiol B Biochem Mol Biol 151(1):10–27

    Article  PubMed  Google Scholar 

  14. Grunewald S, Sharma R, Paasch U, Glander HJ, Agarwal A (2009) Impact of caspase activation in human spermatozoa. Microsc Res Tech 72(11):878–888

    Article  PubMed  CAS  Google Scholar 

  15. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407(6805):770–776

    Article  PubMed  CAS  Google Scholar 

  16. Morishima N, Nakanishi K, Takenouchi H, Shibata T, Yasuhiko Y (2002) An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J Biol Chem 277(37):34287–34294

    Article  PubMed  CAS  Google Scholar 

  17. Blanco-Rodriguez J (1998) A matter of death and life: the significance of germ cell death during spermatogenesis. Int J Androl 21(5):236–248

    Article  PubMed  CAS  Google Scholar 

  18. Sinha Hikim AP, Swerdloff RS (1999) Hormonal and genetic control of germ cell apoptosis in the testis. Rev Reprod 4(1):38–47

    Article  PubMed  CAS  Google Scholar 

  19. Russell LD, Warren J, Debeljuk L et al (2001) Spermatogenesis in Bclw-deficient mice. Biol Reprod 65(1):318–332

    Article  PubMed  CAS  Google Scholar 

  20. Yan W, Suominen J, Samson M, Jegou B, Toppari J (2000) Involvement of Bcl-2 family proteins in germ cell apoptosis during testicular development in the rat and pro-survival effect of stem cell factor on germ cells in vitro. Mol Cell Endocrinol 165(1–2):115–129

    Article  PubMed  CAS  Google Scholar 

  21. Kim SK, Yoon YD, Park YS, Seo JT, Kim JH (2007) Involvement of the Fas-Fas ligand system and active caspase-3 in abnormal apoptosis in human testes with maturation arrest and Sertoli cell-only syndrome. Fertil Steril 87(3):547–553

    Article  PubMed  CAS  Google Scholar 

  22. Bozec A, Amara S, Guarmit B et al (2008) Status of the executioner step of apoptosis in human with normal spermatogenesis and azoospermia. Fertil Steril 90(5):1723–1731

    Article  PubMed  CAS  Google Scholar 

  23. Fujisawa M, Hiramine C, Tanaka H, Okada H, Arakawa S, Kamidono S (1999) Decrease in apoptosis of germ cells in the testes of infertile men with varicocele. World J Urol 17(5):296–300

    Article  PubMed  CAS  Google Scholar 

  24. Tanaka H, Fujisawa M, Okada H, Kamidono S (2002) Apoptosis-related proteins in the testes of infertile men with varicocele. BJU Int 89(9):905–909

    Article  PubMed  Google Scholar 

  25. Lee J, Richburg JH, Shipp EB, Meistrich ML, Boekelheide K (1999) The Fas system, a regulator of testicular germ cell apoptosis, is differentially up-regulated in Sertoli cell versus germ cell injury of the testis. Endocrinology 140(2):852–858

    Article  PubMed  CAS  Google Scholar 

  26. Pentikainen V, Erkkila K, Dunkel L (1999) Fas regulates germ cell apoptosis in the human testis in vitro. Am J Physiol 276(2 Pt 1):E310–E316

    PubMed  CAS  Google Scholar 

  27. Lee J, Richburg JH, Younkin SC, Boekelheide K (1997) The Fas system is a key regulator of germ cell apoptosis in the testis. Endocrinology 138(5):2081–2088

    Article  PubMed  CAS  Google Scholar 

  28. Siegel RM (2006) Caspases at the crossroads of immune-cell life and death. Nat Rev Immunol 6(4):308–317

    Article  PubMed  CAS  Google Scholar 

  29. Grunewald S, Kriegel C, Baumann T, Glander HJ, Paasch U (2009) Interactions between apoptotic signal transduction and capacitation in human spermatozoa. Hum Reprod 24(9):2071–2078

    Article  PubMed  CAS  Google Scholar 

  30. Grunewald S, Baumann T, Paasch U, Glander HJ (2006) Capacitation and acrosome reaction in nonapoptotic human spermatozoa. Ann N Y Acad Sci 1090:138–146

    Article  PubMed  Google Scholar 

  31. Yudin AI, Goldberg E, Robertson KR, Overstreet JW (2000) Calpain and calpastatin are located between the plasma membrane and outer acrosomal membrane of cynomolgus macaque spermatozoa. J Androl 21(5):721–729

    PubMed  CAS  Google Scholar 

  32. Ozaki Y, Blomgren K, Ogasawara MS et al (2001) Role of calpain in human sperm activated by progesterone for fertilization. Biol Chem 382(5):831–838

    Article  PubMed  CAS  Google Scholar 

  33. Wang KK, Posmantur R, Nadimpalli R et al (1998) Caspase-mediated fragmentation of calpain inhibitor protein calpastatin during apoptosis. Arch Biochem Biophys 356(2):187–196

    Article  PubMed  CAS  Google Scholar 

  34. Pujianto DA, Curry BJ, Aitken RJ (2010) Prolactin exerts a prosurvival effect on human spermatozoa via mechanisms that involve the stimulation of Akt phosphorylation and suppression of caspase activation and capacitation. Endocrinology 151(3):1269–1279

    Article  PubMed  CAS  Google Scholar 

  35. Almeida C, Cardoso MF, Sousa M et al (2005) Quantitative study of caspase-3 activity in semen and after swim-up preparation in relation to sperm quality. Hum Reprod 20(5):1307–1313

    Article  PubMed  CAS  Google Scholar 

  36. Aziz N, Said T, Paasch U, Agarwal A (2007) The relationship between human sperm apoptosis, morphology and the sperm deformity index. Hum Reprod 22(5):1413–1419

    Article  PubMed  Google Scholar 

  37. Paasch U, Grunewald S, Fitzl G, Glander HJ (2003) Deterioration of plasma membrane is associated with activated caspases in human spermatozoa. J Androl 24(2):246–252

    PubMed  CAS  Google Scholar 

  38. Liu CH, Tsao HM, Cheng TC et al (2004) DNA fragmentation, mitochondrial dysfunction and chromosomal aneuploidy in the spermatozoa of oligoasthenoteratozoospermic males. J Assist Reprod Genet 21(4):119–126

    Article  PubMed  CAS  Google Scholar 

  39. Marchetti C, Obert G, Deffosez A, Formstecher P, Marchetti P (2002) Study of mitochondrial membrane potential, reactive oxygen species, DNA fragmentation and cell viability by flow cytometry in human sperm. Hum Reprod 17(5):1257–1265

    Article  PubMed  Google Scholar 

  40. Pena FJ, Johannisson A, Wallgren M, Rodriguez-Martinez H (2003) Assessment of fresh and frozen-thawed boar semen using an Annexin-V assay: a new method of evaluating sperm membrane integrity. Theriogenology 60(4):677–689

    Article  PubMed  Google Scholar 

  41. Said TM, Grunewald S, Paasch U et al (2005) Advantage of combining magnetic cell separation with sperm preparation techniques. Reprod Biomed Online 10(6):740–746

    Article  PubMed  Google Scholar 

  42. Shen HM, Dai J, Chia SE, Lim A, Ong CN (2002) Detection of apoptotic alterations in sperm in subfertile patients and their correlations with sperm quality. Hum Reprod 17(5):1266–1273

    Article  PubMed  Google Scholar 

  43. Weng SL, Taylor SL, Morshedi M et al (2002) Caspase activity and apoptotic markers in ejaculated human sperm. Mol Hum Reprod 8(11):984–991

    Article  PubMed  CAS  Google Scholar 

  44. Taylor SL, Weng SL, Fox P et al (2004) Somatic cell apoptosis markers and pathways in human ejaculated sperm: potential utility as indicators of sperm quality. Mol Hum Reprod 10(11):825–834

    Article  PubMed  CAS  Google Scholar 

  45. Said T, Agarwal A, Grunewald S et al (2006) Selection of nonapoptotic spermatozoa as a new tool for enhancing assisted reproduction outcomes: an in vitro model. Biol Reprod 74(3):530–537

    Article  PubMed  CAS  Google Scholar 

  46. Sakkas D, Alvarez JG (2010) Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril 93(4):1027–1036

    Article  PubMed  CAS  Google Scholar 

  47. Brugnon F, Janny L, Artonne C, Sion B, Pouly JL, Grizard G (2009) Activated caspases in thawed epididymal and testicular spermatozoa of patients with congenital bilateral absence of the vas deferens and intracytoplasmic sperm injection outcome. Fertil Steril 92(2):557–564

    Article  PubMed  Google Scholar 

  48. Kotwicka M, Filipiak K, Jedrzejczak P, Warchol JB (2008) Caspase-3 activation and phosphatidylserine membrane translocation in human spermatozoa: is there a relationship? Reprod Biomed Online 16(5):657–663

    Article  PubMed  CAS  Google Scholar 

  49. Chang FW, Sun GH, Cheng YY, Chen IC, Chien HH, Wu GJ (2010) Effects of varicocele upon the expression of apoptosis-related proteins. Andrologia 42(4):225–230

    Article  PubMed  CAS  Google Scholar 

  50. Lee JD, Lu LY, Cheng WH, Jeng SY (2009) Dysregulated apoptosis through the intrinsic pathway in the internal spermatic vein of patients with varicocele. J Formos Med Assoc 108(8):612–618

    Article  PubMed  CAS  Google Scholar 

  51. El-Domyati MM, Al-Din AB, Barakat MT et al (2010) The expression and distribution of deoxyribonucleic acid repair and apoptosis markers in testicular germ cells of infertile varicocele patients resembles that of old fertile men. Fertil Steril 93(3):795–801

    Article  PubMed  CAS  Google Scholar 

  52. Ringdahl E, Teague L (2006) Testicular torsion. Am Fam Physician 74(10):1739–1743

    PubMed  Google Scholar 

  53. Minutoli L, Antonuccio P, Polito F et al (2009) Mitogen-activated protein kinase 3/mitogen-activated protein kinase 1 activates apoptosis during testicular ischemia-reperfusion injury in a nuclear factor-kappaB-independent manner. Eur J Pharmacol 604(1–3):27–35

    Article  PubMed  CAS  Google Scholar 

  54. Grunewald S, Paasch U, Glander HJ, Anderegg U (2005) Mature human spermatozoa do not transcribe novel RNA. Andrologia 37(2–3):69–71

    Article  PubMed  CAS  Google Scholar 

  55. Ostermeier GC, Miller D, Huntriss JD, Diamond MP, Krawetz SA (2004) Reproductive biology: delivering spermatozoan RNA to the oocyte. Nature 429(6988):154

    Article  PubMed  CAS  Google Scholar 

  56. Ekert PG, Silke J, Vaux DL (1999) Caspase inhibitors. Cell Death Differ 6(11):1081–1086

    Article  PubMed  CAS  Google Scholar 

  57. Pozarowski P, Huang X, Halicka DH, Lee B, Johnson G, Darzynkiewicz Z (2003) Interactions of fluorochrome-labeled caspase inhibitors with apoptotic cells: a caution in data interpretation. Cytometry A 55(1):50–60

    Article  PubMed  CAS  Google Scholar 

  58. Grunewald S, Rasch M, Reinhardt M, Baumann T, Paasch U, Glander HJ (2008) Stability of fluorochrome based assays to measure subcellular sperm functions. Asian J Androl 10(3):455–459

    Article  PubMed  CAS  Google Scholar 

  59. de Vries KJ, Wiedmer T, Sims PJ, Gadella BM (2003) Caspase-independent exposure of aminophospholipids and tyrosine phosphorylation in bicarbonate responsive human sperm cells. Biol Reprod 68(6):2122–2134

    Article  PubMed  Google Scholar 

  60. Giampietri C, Petrungaro S, Coluccia P et al (2005) Germ cell apoptosis control during spermatogenesis. Contraception 72(4):298–302

    Article  PubMed  CAS  Google Scholar 

  61. Hikim AP, Lue Y, Yamamoto CM et al (2003) Key apoptotic pathways for heat-induced programmed germ cell death in the testis. Endocrinology 144(7):3167–3175

    Article  PubMed  CAS  Google Scholar 

  62. Tesarik J, Martinez F, Rienzi L et al (2002) In-vitro effects of FSH and testosterone withdrawal on caspase activation and DNA fragmentation in different cell types of human seminiferous epithelium. Hum Reprod 17(7):1811–1819

    Article  PubMed  CAS  Google Scholar 

  63. Zheng S, Turner TT, Lysiak JJ (2006) Caspase 2 activity contributes to the initial wave of germ cell apoptosis during the first round of spermatogenesis. Biol Reprod 74(6):1026–1033

    Article  PubMed  CAS  Google Scholar 

  64. Abraham MC, Shaham S (2004) Death without caspases, caspases without death. Trends Cell Biol 14(4):184–193

    Article  PubMed  CAS  Google Scholar 

  65. Meyer-Ficca ML, Lonchar J, Credidio C et al (2009) Disruption of poly(ADP-ribose) homeostasis affects spermiogenesis and sperm chromatin integrity in mice. Biol Reprod 81(1):46–55

    Article  PubMed  CAS  Google Scholar 

  66. Decker P, Muller S (2002) Modulating poly (ADP-ribose) polymerase activity: potential for the prevention and therapy of pathogenic situations involving DNA damage and oxidative stress. Curr Pharm Biotechnol 3(3):275–283

    Article  PubMed  CAS  Google Scholar 

  67. Ame JC, Spenlehauer C, de Murcia G (2004) The PARP superfamily. Bioessays 26(8):882–893

    Article  PubMed  CAS  Google Scholar 

  68. Wacker DA, Frizzell KM, Zhang T, Kraus WL (2007) Regulation of chromatin structure and chromatin-dependent transcription by poly(ADP-ribose) polymerase-1: possible targets for drug-based therapies. Subcell Biochem 41:45–69

    Article  PubMed  Google Scholar 

  69. Flohr C, Burkle A, Radicella JP, Epe B (2003) Poly(ADP-ribosyl)ation accelerates DNA repair in a pathway dependent on Cockayne syndrome B protein. Nucleic Acids Res 31(18):5332–5337

    Article  PubMed  CAS  Google Scholar 

  70. Meyer-Ficca ML, Scherthan H, Burkle A, Meyer RG (2005) Poly(ADP-ribosyl)ation during chromatin remodeling steps in rat spermiogenesis. Chromosoma 114(1):67–74

    Article  PubMed  CAS  Google Scholar 

  71. Schreiber V, Dantzer F, Ame JC, de Murcia G (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7(7):517–528

    Article  PubMed  CAS  Google Scholar 

  72. Hassa PO, Hottiger MO (2008) The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. Front Biosci 13:3046–3082

    Article  PubMed  CAS  Google Scholar 

  73. Woodhouse BC, Dianova II, Parsons JL, Dianov GL (2008) Poly(ADP-ribose) polymerase-1 modulates DNA repair capacity and prevents formation of DNA double strand breaks. DNA Repair (Amst) 7(6):932–940

    Article  CAS  Google Scholar 

  74. Ermak G, Davies KJ (2002) Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol 38(10):713–721

    Article  PubMed  CAS  Google Scholar 

  75. Kun E, Kirsten E, Mendeleyev J, Ordahl CP (2004) Regulation of the enzymatic catalysis of poly(ADP-ribose) polymerase by dsDNA, polyamines, Mg2+, Ca2+, histones H1 and H3, and ATP. Biochemistry 43(1):210–216

    Article  PubMed  CAS  Google Scholar 

  76. Bader M, Arama E, Steller H (2010) A novel F-box protein is required for caspase activation during cellular remodeling in Drosophila. Development 137(10):1679–1688

    Article  PubMed  CAS  Google Scholar 

  77. Baker MA, Aitken RJ (2005) Reactive oxygen species in spermatozoa: methods for monitoring and significance for the origins of genetic disease and infertility. Reprod Biol Endocrinol 3:67

    Article  PubMed  Google Scholar 

  78. Barbonetti A, Vassallo MR, Fortunato D, Francavilla S, Maccarrone M, Francavilla F (2010) Energetic metabolism and human sperm motility: impact of CB receptor activation. Endocrinology 151(12):5882–5892

    Article  PubMed  CAS  Google Scholar 

  79. Ariumi Y, Masutani M, Copeland TD et al (1999) Suppression of the poly(ADP-ribose) polymerase activity by DNA-dependent protein kinase in vitro. Oncogene 18(32):4616–4625

    Article  PubMed  CAS  Google Scholar 

  80. Dantzer F, de La Rubia G, Menissier-De Murcia J, Hostomsky Z, de Murcia G, Schreiber V (2000) Base excision repair is impaired in mammalian cells lacking poly(ADP-ribose) polymerase-1. Biochemistry 39(25):7559–7569

    Article  PubMed  CAS  Google Scholar 

  81. Schreiber V, Ame JC, Dolle P et al (2002) Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. J Biol Chem 277(25):23028–23036

    Article  PubMed  CAS  Google Scholar 

  82. Brugnon F, Ouchchane L, Verheyen G et al (2009) Fluorescence microscopy and flow cytometry in measuring activated caspases in human spermatozoa. Int J Androl 32(3):265–273

    Article  PubMed  CAS  Google Scholar 

  83. D’Amours D, Sallmann FR, Dixit VM, Poirier GG (2001) Gain-of-function of poly(ADP-ribose) polymerase-1 upon cleavage by apoptotic proteases: implications for apoptosis. J Cell Sci 114(Pt 20):3771–3778

    PubMed  Google Scholar 

  84. Hikim AP, Vera Y, Vernet D et al (2005) Involvement of nitric oxide-mediated intrinsic pathway signaling in age-related increase in germ cell apoptosis in male Brown-Norway rats. J Gerontol A Biol Sci Med Sci 60(6):702–708

    Article  PubMed  Google Scholar 

  85. Codelia VA, Cisterna M, Alvarez AR, Moreno RD (2010) p73 participates in male germ cells apoptosis induced by etoposide. Mol Hum Reprod 16(10):734–742

    Article  PubMed  CAS  Google Scholar 

  86. Paasch U, Grunewald S, Agarwal A, Glandera HJ (2004) Activation pattern of caspases in human spermatozoa. Fertil Steril 81(Suppl 1):802–809

    Article  PubMed  CAS  Google Scholar 

  87. Mahfouz RZ, Sharma RK, Poenicke K et al (2009) Evaluation of poly(ADP-ribose) polymerase cleavage (cPARP) in ejaculated human sperm fractions after induction of apoptosis. Fertil Steril 91(5 Suppl):2210–2220

    Article  PubMed  CAS  Google Scholar 

  88. Aziz N, Sharma RK, Mahfouz R, Jha R, Agarwal A (2011) Association of sperm morphology and the sperm deformity index (SDI) with poly (ADP-ribose) polymerase (PARP) cleavage inhibition. Fertil Steril 95(8):2481–2484

    Article  PubMed  CAS  Google Scholar 

  89. de la Lastra CA, Villegas I, Sanchez-Fidalgo S (2007) Poly(ADP-ribose) polymerase inhibitors: new pharmacological functions and potential clinical implications. Curr Pharm Des 13(9):933–962

    Article  PubMed  Google Scholar 

  90. Wang X, Sharma RK, Sikka SC, Thomas AJ Jr, Falcone T, Agarwal A (2003) Oxidative stress is associated with increased apoptosis leading to spermatozoa DNA damage in patients with male factor infertility. Fertil Steril 80(3):531–535

    Article  PubMed  Google Scholar 

  91. Maymon BB, Cohen-Armon M, Yavetz H et al (2006) Role of poly(ADP-ribosyl)ation during human spermatogenesis. Fertil Steril 86(5):1402–1407

    Article  PubMed  CAS  Google Scholar 

  92. Shukla S, Jha RK, Laloraya M, Kumar PG (2005) Identification of non-mitochondrial NADPH oxidase and the spatio-temporal organization of its components in mouse spermatozoa. Biochem Biophys Res Commun 331(2):476–483

    Article  PubMed  CAS  Google Scholar 

  93. Moustafa MH, Sharma RK, Thornton J et al (2004) Relationship between ROS production, apoptosis and DNA denaturation in spermatozoa from patients examined for infertility. Hum Reprod 19(1):129–138

    Article  PubMed  CAS  Google Scholar 

  94. Greco E, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, Tesarik J (2005) Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. J Androl 26(3):349–353

    Article  PubMed  CAS  Google Scholar 

  95. El-Khamisy SF, Masutani M, Suzuki H, Caldecott KW (2003) A requirement for PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage. Nucleic Acids Res 31(19):5526–5533

    Article  PubMed  CAS  Google Scholar 

  96. Boulares AH, Yakovlev AG, Ivanova V et al (1999) Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. J Biol Chem 274(33):22932–22940

    Article  PubMed  CAS  Google Scholar 

  97. Shiraishi K, Takihara H, Matsuyama H (2010) Elevated scrotal temperature, but not varicocele grade, reflects testicular oxidative stress-mediated apoptosis. World J Urol 28(3):359–364

    Article  PubMed  CAS  Google Scholar 

  98. Tekcan M, Koksal IT, Tasatargil A, Kutlu O, Gungor E, Celik-Ozenci C (2012) Potential role of poly(ADP-ribose) polymerase activation in the pathogenesis of experimental left varicocele. J Androl 33(1):122–132

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamer M. Said MD, PhD, HCLD (ABB) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Said, T.M., Khosravi, F. (2012). Role of Caspase, PARP, and Oxidative Stress in Male Infertility. In: Agarwal, A., Aitken, R., Alvarez, J. (eds) Studies on Men's Health and Fertility. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press. https://doi.org/10.1007/978-1-61779-776-7_12

Download citation

Publish with us

Policies and ethics