Skip to main content

Homology Modeling of Class A G Protein-Coupled Receptors

  • Protocol
  • First Online:
Book cover Homology Modeling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 857))

Abstract

G protein-coupled receptors (GPCRs) are a large superfamily of membrane bound signaling proteins that hold great pharmaceutical interest. Since experimentally elucidated structures are available only for a very limited number of receptors, homology modeling has become a widespread technique for the construction of GPCR models intended to study the structure–function relationships of the receptors and aid the discovery and development of ligands capable of modulating their activity. Through this chapter, various aspects involved in the constructions of homology models of the serpentine domain of the largest class of GPCRs, known as class A or rhodopsin family, are illustrated. In particular, the chapter provides suggestions, guidelines, and critical thoughts on some of the most crucial aspect of GPCR modeling, including: collection of candidate templates and a structure-based alignment of their sequences; identification and alignment of the transmembrane helices of the query receptor to the corresponding domains of the candidate templates; selection of one or more templates receptor; election of homology or de novo modeling for the construction of specific extracellular and intracellular domains; construction of the 3D models, with special consideration to extracellular regions, disulfide bridges, and interhelical cavity; validation of the models through controlled virtual screening experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pierce, K., Premont, R., and Lefkowitz, R. (2002) Seven-transmembrane receptors Nat. Rev. Mol. Cell Biol. 3, 639–50.

    Article  PubMed  CAS  Google Scholar 

  2. Gloriam, D., Fredriksson, R., and Schiöth, H. (2007) The G protein-coupled receptor subset of the rat genome. BMC Genomics 8, 338.

    Article  PubMed  Google Scholar 

  3. Overington, J. P., Al-Lazikani, B., and Hopkins, A. L. (2006) How many drug targets are there? Nat. Rev. Drug Discov. 5, 993–6.

    Article  PubMed  CAS  Google Scholar 

  4. Costanzi, S., Siegel, J., Tikhonova, I., and Jacobson, K. (2009) Rhodopsin and the others: a historical perspective on structural studies of G protein-coupled receptors Curr. Pharm. Des. 15, 3994–4002.

    Article  PubMed  CAS  Google Scholar 

  5. Hanson, M. A., and Stevens, R. C. (2009) Discovery of new GPCR biology: one receptor structure at a time Structure 17, 8–14.

    Article  PubMed  CAS  Google Scholar 

  6. Wu, B., Chien, E. Y., Mol, C. D., Fenalti, G., Liu, W., Katritch, V., Abagyan, R., Brooun, A., Wells, P., Bi, F. C., Hamel, D. J., Kuhn, P., Handel, T. M., Cherezov, V., and Stevens, R. C. (2010) Structures of the CXCR4 Chemokine GPCR with Small-Molecule and Cyclic Peptide Antagonists Science.

    Google Scholar 

  7. Rasmussen, S. G., Choi, H. J., Fung, J. J., Pardon, E., Casarosa, P., Chae, P. S., Devree, B. T., Rosenbaum, D. M., Thian, F. S., Kobilka, T. S., Schnapp, A., Konetzki, I., Sunahara, R. K., Gellman, S. H., Pautsch, A., Steyaert, J., Weis, W. I., and Kobilka, B. K. (2011) Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor Nature 469, 175–80.

    Article  PubMed  CAS  Google Scholar 

  8. Rosenbaum, D. M., Zhang, C., Lyons, J. A., Holl, R., Aragao, D., Arlow, D. H., Rasmussen, S. G., Choi, H. J., Devree, B. T., Sunahara, R. K., Chae, P. S., Gellman, S. H., Dror, R. O., Shaw, D. E., Weis, W. I., Caffrey, M., Gmeiner, P., and Kobilka, B. K. (2011) Structure and function of an irreversible agonist-beta(2) adrenoceptor complex Nature 469, 236–40.

    Article  PubMed  CAS  Google Scholar 

  9. Warne, T., Moukhametzianov, R., Baker, J. G., Nehme, R., Edwards, P. C., Leslie, A. G., Schertler, G. F., and Tate, C. G. (2011) The structural basis for agonist and partial agonist action on a beta(1)-adrenergic receptor Nature 469, 241–4.

    Article  PubMed  CAS  Google Scholar 

  10. Chien, E. Y., Liu, W., Zhao, Q., Katritch, V., Han, G. W., Hanson, M. A., Shi, L., Newman, A. H., Javitch, J. A., Cherezov, V., and Stevens, R. C. (2010) Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist Science 330, 1091–5.

    Article  PubMed  CAS  Google Scholar 

  11. Costanzi, S. (2010) Modelling G protein-coupled receptors: a concrete possibility Chimica Oggi-Chemistry Today 28, 26–30.

    CAS  Google Scholar 

  12. Bissantz, C., Bernard, P., Hibert, M., and Rognan, D. (2003) Protein-based virtual screening of chemical databases. II. Are homology models of G-Protein Coupled Receptors suitable targets? Proteins 50, 5–25.

    Article  PubMed  CAS  Google Scholar 

  13. Moro, S., Deflorian, F., Bacilieri, M., and Spalluto, G. (2006) Ligand-based homology modeling as attractive tool to inspect GPCR structural plasticity Curr. Pharm. Des. 12, 2175–85.

    Article  PubMed  CAS  Google Scholar 

  14. Jacobson, K., Gao, Z., and Liang, B. (2007) Neoceptors: reengineering GPCRs to recognize tailored ligands. Trends Pharmacol. Sci. 28, 111–6.

    Article  PubMed  CAS  Google Scholar 

  15. Worth, C., Kleinau, G., and Krause, G. (2009) Comparative sequence and structural analyses of G-protein-coupled receptor crystal structures and implications for molecular models. PLoS One 4, e7011.

    Article  PubMed  Google Scholar 

  16. Mobarec, J., Sanchez, R., and Filizola, M. (2009) Modern Homology Modeling of G-Protein Coupled Receptors: Which Structural Template to Use? J. Med. Chem. 52, 5207–16.

    Article  PubMed  CAS  Google Scholar 

  17. Costanzi, S. (2008) On the applicability of GPCR homology models to computer-aided drug discovery: a comparison between in silico and crystal structures of the beta2-adrenergic receptor J. Med. Chem. 51, 2907–14.

    Article  PubMed  CAS  Google Scholar 

  18. Michino, M., Abola, E., 2008 Participants, G., Brooks, C. r., Dixon, J., Moult, J., and Stevens, R. (2009) Community-wide assessment of GPCR structure modelling and ligand docking: GPCR Dock 2008 Nat. Rev. Drug. Discov. 8, 455–63.

    Google Scholar 

  19. van Rhee, A. M., Fischer, B., van Galen, P. J., and Jacobson, K. A. (1995) Modelling the P2Y purinoceptor using rhodopsin as template Drug Des. Discov. 13, 133–54.

    PubMed  Google Scholar 

  20. Ballesteros, J. A., and Weinstein, H. (1995) Integrated method for the consturction of three dimensional models and computational probing of structure-function relations in G-protein coupled receptors. Methods Neurosci 25, 366–428.

    Article  CAS  Google Scholar 

  21. van Rhee, A. M., and Jacobson, K. A. (1996) Molecular architecture of G protein-coupled receptors Drug Develop. Res. 37, 1–38.

    Article  Google Scholar 

  22. Tikhonova, I., and Costanzi, S. (2009) Unraveling the structure and function of G protein-coupled receptors through NMR spectroscopy. Curr. Pharm. Des. 15, 4003–16.

    Article  PubMed  CAS  Google Scholar 

  23. Vilar, S., Ferino, G., Phatak, S. S., Berk, B., Cavasotto, C. N., and Costanzi, S. (2010) Docking-based virtual screening for ligands of G protein-coupled receptors: Not only crystal structures but also in silico models J. Mol. Graph. Model., doi: 10.1016/j.jmgm.2010.11.005.

    Google Scholar 

  24. Hoffmann, C., Moro, S., Nicholas, R. A., Harden, T. K., and Jacobson, K. A. (1999) The role of amino acids in extracellular loops of the human P2Y1 receptor in surface expression and activation processes J. Biol. Chem. 274, 14639–47.

    Article  PubMed  CAS  Google Scholar 

  25. Costanzi, S., Mamedova, L., Gao, Z., and Jacobson, K. (2004) Architecture of P2Y nucleotide receptors: structural comparison based on sequence analysis, mutagenesis, and homology modeling. J. Med. Chem. 47, 5393–404.

    Article  PubMed  CAS  Google Scholar 

  26. Noda, K., Saad, Y., Graham, R. M., and Karnik, S. S. (1994) The high affinity state of the beta 2-adrenergic receptor requires unique interaction between conserved and non-conserved extracellular loop cysteines J. Biol. Chem. 269, 6743–52.

    PubMed  CAS  Google Scholar 

  27. Cherezov, V., Rosenbaum, D., Hanson, M., Rasmussen, S., Thian, F., Kobilka, T., Choi, H., Kuhn, P., Weis, W., Kobilka, B., and Stevens, R. (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor Science 318, 1258–65.

    Article  PubMed  CAS  Google Scholar 

  28. Rosenbaum, D., Cherezov, V., Hanson, M., Rasmussen, S., Thian, F., Kobilka, T., Choi, H., Yao, X., Weis, W., Stevens, R., and Kobilka, B. (2007) GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function Science 318, 1266–73.

    Google Scholar 

  29. Katritch, V., Jaakola, V., Lane, J., Lin, J., Ijzerman, A., Yeager, M., Kufareva, I., Stevens, R., and Abagyan, R. (2010) Structure-based discovery of novel chemotypes for adenosine A(2A) receptor antagonists J. Med. Chem. 53, 1799–809.

    Article  PubMed  CAS  Google Scholar 

  30. Evers, A., and Klebe, G. (2004) Ligand-supported homology modeling of g-protein-coupled receptor sites: models sufficient for successful virtual screening Angew. Chem. Int. Ed. Engl. 43, 248–51.

    Article  PubMed  CAS  Google Scholar 

  31. Cavasotto, C. N., Orry, A. J., Murgolo, N. J., Czarniecki, M. F., Kocsi, S. A., Hawes, B. E., O’Neill, K. A., Hine, H., Burton, M. S., Voigt, J. H., Abagyan, R. A., Bayne, M. L., and Monsma, F. J., Jr. (2008) Discovery of novel chemotypes to a G-protein-coupled receptor through ligand-steered homology modeling and structure-based virtual screening J. Med. Chem. 51, 581–8.

    Article  PubMed  CAS  Google Scholar 

  32. Vilar, S., Karpiak, J., and Costanzi, S. (2010) Ligand and structure-based models for the prediction of ligand-receptor affinities and virtual screenings: Development and application to the beta(2)-adrenergic receptor J. Comput. Chem. 31, 707–20.

    PubMed  CAS  Google Scholar 

  33. Warne, T., Serrano-Vega, M., Baker, J., Moukhametzianov, R., Edwards, P., Henderson, R., Leslie, A., Tate, C., and Schertler, G. (2008) Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454, 486–91.

    Article  PubMed  CAS  Google Scholar 

  34. Shimamura, T., Hiraki, K., Takahashi, N., Hori, T., Ago, H., Masuda, K., Takio, K., Ishiguro, M., and Miyano, M. (2008) Crystal structure of squid rhodopsin with intracellularly extended cytoplasmic region J. Biol. Chem. 283, 17753–6.

    Article  PubMed  CAS  Google Scholar 

  35. Fritze, O., Filipek, S., Kuksa, V., Palczewski, K., Hofmann, K. P., and Ernst, O. P. (2003) Role of the conserved NPxxY(x)5,6F motif in the rhodopsin ground state and during activation Proc. Natl. Acad. Sci. U. S. A. 100, 2290–5.

    Article  PubMed  CAS  Google Scholar 

  36. Wang, T., and Duan, Y. (2007) Chromophore channeling in the G-protein coupled receptor rhodopsin J. Am. Chem. Soc. 129, 6970–1.

    Article  PubMed  CAS  Google Scholar 

  37. Hildebrand, P. W., Scheerer, P., Park, J. H., Choe, H. W., Piechnick, R., Ernst, O. P., Hofmann, K. P., and Heck, M. (2009) A ligand channel through the G protein coupled receptor opsin PLoS One 4, e4382.

    Article  PubMed  Google Scholar 

  38. Wang, T., and Duan, Y. (2009) Ligand entry and exit pathways in the beta2-adrenergic receptor J. Mol. Biol. 392, 1102–15.

    Article  PubMed  CAS  Google Scholar 

  39. Okuno, Y., Tamon, A., Yabuuchi, H., Niijima, S., Minowa, Y., Tonomura, K., Kunimoto, R., and Feng, C. (2008) GLIDA: GPCR--ligand database for chemical genomics drug discovery--database and tools update. Nucleic Acids Res. 36, D907–12.

    Article  PubMed  CAS  Google Scholar 

  40. Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A., Le Trong, I., Teller, D. C., Okada, T., Stenkamp, R. E., Yamamoto, M., and Miyano, M. (2000) Crystal structure of rhodopsin: A G protein-coupled receptor Science 289, 739–45.

    Article  PubMed  CAS  Google Scholar 

  41. Li, J., Edwards, P. C., Burghammer, M., Villa, C., and Schertler, G. F. (2004) Structure of bovine rhodopsin in a trigonal crystal form J. Mol. Biol. 343, 1409–38.

    Article  PubMed  CAS  Google Scholar 

  42. Teller, D. C., Okada, T., Behnke, C. A., Palczewski, K., and Stenkamp, R. E. (2001) Advances in determination of a high-resolution three-dimensional structure of rhodopsin, a model of G-protein-coupled receptors (GPCRs) Biochemistry 40, 7761–72.

    Article  PubMed  CAS  Google Scholar 

  43. Okada, T., Fujiyoshi, Y., Silow, M., Navarro, J., Landau, E. M., and Shichida, Y. (2002) Functional role of internal water molecules in rhodopsin revealed by X-ray crystallography Proc. Natl. Acad. Sci. U. S. A. 99, 5982–7.

    Article  PubMed  CAS  Google Scholar 

  44. Okada, T., Sugihara, M., Bondar, A. N., Elstner, M., Entel, P., and Buss, V. (2004) The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure J. Mol. Biol. 342, 571–83.

    Article  PubMed  CAS  Google Scholar 

  45. Salom, D., Lodowski, D., Stenkamp, R., Le Trong, I., Golczak, M., Jastrzebska, B., Harris, T., Ballesteros, J., and Palczewski, K. (2006) Crystal structure of a photoactivated deprotonated intermediate of rhodopsin. Proc. Natl. Acad. Sci. U. S. A. 103, 16123–8.

    Article  PubMed  CAS  Google Scholar 

  46. Standfuss, J., Xie, G., Edwards, P. C., Burghammer, M., Oprian, D. D., and Schertler, G. F. (2007) Crystal structure of a thermally stable rhodopsin mutant J. Mol. Biol. 372, 1179–88.

    Article  PubMed  CAS  Google Scholar 

  47. Stenkamp, R. E. (2008) Alternative models for two crystal structures of bovine rhodopsin Acta Crystallogr. D Biol. Crystallogr. D64, 902–4.

    Article  PubMed  CAS  Google Scholar 

  48. Nakamichi, H., and Okada, T. (2006) Crystallographic analysis of primary visual photochemistry Angew. Chem. Int. Ed. Engl. 45, 4270–3.

    Article  PubMed  CAS  Google Scholar 

  49. Nakamichi, H., and Okada, T. (2006) Local peptide movement in the photoreaction intermediate of rhodopsin Proc. Natl. Acad. Sci. U. S. A. 103, 12729–34.

    Article  PubMed  CAS  Google Scholar 

  50. Nakamichi, H., Buss, V., and Okada, T. (2007) Photoisomerization mechanism of rhodopsin and 9-cis-rhodopsin revealed by x-ray crystallography Biophys. J. 92, L106–8.

    Article  PubMed  CAS  Google Scholar 

  51. Murakami, M., and Kouyama, T. (2008) Crystal structure of squid rhodopsin. Nature 453, 363–7.

    Article  PubMed  CAS  Google Scholar 

  52. Park, J. H., Scheerer, P., Hofmann, K. P., Choe, H. W., and Ernst, O. P. (2008) Crystal structure of the ligand-free G-protein-coupled receptor opsin Nature 454, 183–7.

    Article  PubMed  CAS  Google Scholar 

  53. Scheerer, P., Park, J. H., Hildebrand, P. W., Kim, Y. J., Krauss, N., Choe, H. W., Hofmann, K. P., and Ernst, O. P. (2008) Crystal structure of opsin in its G-protein-interacting conformation Nature 455, 497–502.

    Article  PubMed  CAS  Google Scholar 

  54. Rasmussen, S., Choi, H., Rosenbaum, D., Kobilka, T., Thian, F., Edwards, P., Burghammer, M., Ratnala, V., Sanishvili, R., Fischetti, R., Schertler, G., Weis, W., and Kobilka, B. (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450, 383–7.

    Article  PubMed  CAS  Google Scholar 

  55. Hanson, M., Cherezov, V., Griffith, M., Roth, C., Jaakola, V., Chien, E., Velasquez, J., Kuhn, P., and Stevens, R. (2008) A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. Structure 16, 897–905.

    Article  PubMed  CAS  Google Scholar 

  56. Bokoch, M., Zou, Y., Rasmussen, S., Liu, C., Nygaard, R., Rosenbaum, D., Fung, J., Choi, H., Thian, F., Kobilka, T., Puglisi, J., Weis, W., Pardo, L., Prosser, R., Mueller, L., and Kobilka, B. (2010) Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor. Nature 463, 108–12.

    Article  PubMed  CAS  Google Scholar 

  57. Wacker, D., Fenalti, G., Brown, M. A., Katritch, V., Abagyan, R., Cherezov, V., and Stevens, R. C. (2010) Conserved binding mode of human beta2 adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography J. Am. Chem. Soc. 132, 11443–5.

    Article  PubMed  CAS  Google Scholar 

  58. Jaakola, V., Griffith, M., Hanson, M., Cherezov, V., Chien, E., Lane, J., Ijzerman, A., and Stevens, R. (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322, 1211–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the intramural research program of the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Costanzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media,LLC

About this protocol

Cite this protocol

Costanzi, S. (2011). Homology Modeling of Class A G Protein-Coupled Receptors. In: Orry, A., Abagyan, R. (eds) Homology Modeling. Methods in Molecular Biology, vol 857. Humana Press. https://doi.org/10.1007/978-1-61779-588-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-588-6_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-587-9

  • Online ISBN: 978-1-61779-588-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics