Skip to main content

Neuronal Growth-Promoting and Inhibitory Cues in Neuroprotection and Neuroregeneration

  • Protocol
  • First Online:
Neurotrophic Factors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 846))

Abstract

During development of the nervous system, neurons extend axons over considerable distances in a highly stereospecific fashion in order to innervate their targets in an appropriate manner. This involves the recognition, by the axonal growth cone, of guidance cues that determine the pathway taken by the axons. These guidance cues can act to promote and/or repel growth cone advance. The directed growth of axons is partly governed by cell adhesion molecules (CAMs) on the neuronal growth cone that bind to CAMs on the surface of other axons or nonneuronal cells. In vitro assays have established the importance of the CAMs ((neural cell adhesion molecule NCAM), N-cadherin, and L1) in promoting axonal growth over cells. Compelling evidence implicates the fibroblast growth factor receptor tyrosine kinase as the primary signal transduction molecule in the CAM pathway. CAMs are important constituents of synapses, and they appear to play important and diverse roles in regulating synaptic plasticity associated with learning and memory. Synthetic NCAM peptide mimetics corresponding to the binding site of NCAM for the fibroblast growth factor receptor promote synaptogenesis, enhance presynaptic function, and facilitate memory consolidation. Dimeric versions of functional binding motifs of N-cadherin behave as N-cadherin agonists, promoting both neuritogenesis and neuronal cell survival. Negative extracellular signals that physically direct neurite growth have also been described. The latter include the myelin inhibitory proteins, Nogo, myelin-associated glycoprotein, and oligodendrocyte-myelin glycoprotein. Potentiation of outgrowth-promoting signals, together with antagonism of myelin proteins or their convergent receptor, NgR, and its second messenger pathways, may provide new opportunities in the rational design of treatments for acute brain injury and neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tessier-Lavigne M, and Goodman CS (1996) The molecular biology of axonal guidance. Science 274, 1123–1133

    Article  PubMed  CAS  Google Scholar 

  2. Walsh FS, and Doherty P (1997) Neural cell adhesion molecules of the immunoglobulin superfamily: role in axonal growth and guidance. Annu Rev Cell Dev Biol 13, 425–456

    Article  PubMed  CAS  Google Scholar 

  3. Ip NY, and Yancopoulos GD (1996) The neurotrophins and CNTF: two families of collaborative neurotrophic factors. Annu Rev Neurosci 19, 491–515

    Article  PubMed  CAS  Google Scholar 

  4. Skaper SD, and Walsh FS (1998) Neurotrophic molecules: strategies for designing effective therapeutic molecules in neurodegeneration. Mol Cell Neurosci 12, 179–193

    Article  PubMed  CAS  Google Scholar 

  5. Serefini T, Kennedy TE, Galko MJ, Mirzayan C, Jessell TM, and Tessier-Lavigne M (1994) The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 78, 409–424

    Article  Google Scholar 

  6. Mueller BK (1999) Growth cone guidance: first steps toward a deeper understanding. Annu Rev Neurosci 22, 351–388

    Article  PubMed  CAS  Google Scholar 

  7. Fournier AE, and Strittmatter SM (2001) Repulsive factors and axon regeneration in the CNS. Curr Opin Neurobiol 11, 89–94

    Article  PubMed  CAS  Google Scholar 

  8. Kolodkin AL (1996) Semaphorins: mediators of repulsive growth cone guidance. Trends Cell Biol 6: 15–22

    Google Scholar 

  9. Goodman CS (1996) Mechanisms and molecules that control growth cone guidance. Annu Rev Neurosci 19, 341–377

    Article  PubMed  CAS  Google Scholar 

  10. Kenwrick S, Watkins A, and De Angelis E (2000) Neural cell recognition molecule L1: relating biological complexity to human disease mutations. Hum Mol Genet 9, 879–886

    Article  PubMed  CAS  Google Scholar 

  11. Cajal RS (1928) Degeneration and Regeneration of the Nervous System. Hafner. New York.

    Google Scholar 

  12. McGee AW, and Strittmatter SM (2003) The Nogo-66 receptor: focusing myelin inhibition of axon regeneration. Trends Neurosci 26, 193–198

    Article  PubMed  CAS  Google Scholar 

  13. Chen MS, Huber AB, Van Der Haar ME, Frank M, Schnell L, Spillmann AA, et al (2000) Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403, 434–439

    Article  PubMed  CAS  Google Scholar 

  14. GrandPré T, Nakamura F, Vartanian T, and Strittmatter SM (2000) Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 403, 439–444

    Article  PubMed  Google Scholar 

  15. Prinjha R, Moore SE, Vinson M, Blake S, Morrow R, Christie G, et al (2000) Inhibitor of neurite outgrowth in humans. Nature 403, 383–384

    Article  PubMed  CAS  Google Scholar 

  16. McKerracher L, David S, Jackson DL, Kottis V, Dunn RJ, and Braun PE (1994) Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite outgrowth. Neuron 13, 805–811

    Article  PubMed  CAS  Google Scholar 

  17. Mukhopadhyay G, Doherty P, Walsh FS, Crocker PR, and Filbin MT (1994) A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 13, 757–767

    Article  PubMed  CAS  Google Scholar 

  18. Wang KC, Koprivica V, Kim JA, Sivasankaran R, Guo Y, Neve RL, et al (2002) Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 417, 941–944

    Article  PubMed  CAS  Google Scholar 

  19. Dodd J, and Jessell JM (1988) Axon guidance and the patterning of neuronal projections in vertebrates. Science 242, 692–699

    Article  PubMed  CAS  Google Scholar 

  20. Goodman CS, and Shatz CJ (1993) Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell/Neuron 72(suppl. 10), 77–98

    Google Scholar 

  21. Takeichi M (1995) Morphogenetic role of classic cadherins. Curr Opin Cell Biol 7, 619–627

    Article  PubMed  CAS  Google Scholar 

  22. Barami K, Kirschenbaum B, Lemmon V, and Goldman SA (1994) N-Cadherin and Ng-CAM/8D9 are involved serially in the migration of newly generated neurons into the adult songbird brain. Neuron 13, 567–582

    Article  PubMed  CAS  Google Scholar 

  23. Matsunaga M, Hatta K, Nagafuchi A, and Takeichi M (1988) Guidance of optic nerve fibers by N-cadherin adhesion molecules. Nature 334, 62–64

    Article  PubMed  CAS  Google Scholar 

  24. Inoue A, and Sanes JR (1997) Lamina-specific connectivity in the brain: regulation by N-cadherin, neurotrophins, and glycoproteins. Science 276, 1428–1431

    Article  PubMed  CAS  Google Scholar 

  25. Bozdagi O, Shan W, Tanaka H, Benson DL, and Huntley GW (2000) Increasing numbers of synaptic puncta during late-phase LTP: N-cadherin is synthesized, recruited to synaptic sites, and required for potentiation. Neuron 28, 245–259

    Article  PubMed  CAS  Google Scholar 

  26. Saffell JL, Williams EJ, Mason IJ, Walsh FS, and Doherty P (1997) Expression of a dominant negative FGF receptor inhibits axonal growth and FGF receptor phosphorylation stimulated by CAMs. Neuron 18, 231–242

    Article  PubMed  CAS  Google Scholar 

  27. Williams E-J, Furness J, Walsh FS, and Doherty P (1994) Activation of the FGF receptor underlies neurite outgrowth stimulated by L1, N-CAM, and N-cadherin. Neuron 13, 583–594

    Article  PubMed  CAS  Google Scholar 

  28. Williams E-J, Williams G, Howell FV, Skaper SD, Walsh FS, and Doherty P (2001) Identification of an N-cadherin motif that can interact with the fibroblast growth factor receptor and is required for axonal growth. J Biol Chem 276, 43879–43886

    Article  PubMed  CAS  Google Scholar 

  29. Doherty P, Williams E, and Walsh FS (1995) A soluble form of the L1 glycoprotein stimulated neurite outgrowth. Neuron 14, 57–66

    Article  PubMed  CAS  Google Scholar 

  30. Utton MA, Eickholt B, Howell FV, Wallis J, and Doherty P (2001) Soluble N-cadherin stimulates fibroblast growth factor receptor dependent neurite outgrowth and N-cadherin and the fibroblast growth factor receptor co-cluster in cells. J Neurochem 76, 1421–1430

    Article  PubMed  CAS  Google Scholar 

  31. Koch AW, Bozic D, Pertz O, and Engel J (1999) Homophilic adhesion by cadherins. Curr Opin Struct Biol 9, 275–281

    Article  PubMed  CAS  Google Scholar 

  32. Williams E, Williams G, Gour BJ, Blaschuk OW, and Doherty P (2000) A novel family of cyclic peptide antagonists suggests that N-cadherin specificity is determined by amino acids that flank the HAV motif. J Biol Chem 275, 4007–4012

    Article  PubMed  CAS  Google Scholar 

  33. Williams EJ, Williams G, Gour B, Blaschuk O, and Doherty P (2000) INP, a novel N-cadherin antagonist targeted to the amino acids that flank the HAV motif. Mol Cell Neurosci 15, 456–464

    Article  PubMed  CAS  Google Scholar 

  34. Williams G, Williams E-J, and Doherty P (2002) Dimeric versions of two short N-cadherin binding motifs (HAVDI and INPISG) function as N-cadherin agonists. J Biol Chem 277, 4361–4367

    Article  PubMed  CAS  Google Scholar 

  35. Skaper SD, Facci, L, Williams G, Williams EJ, Walsh FS, and Doherty P (2004) A dimeric version of the short N-cadherin binding motif HAVDI promotes neuronal cell survival by activating an N-cadherin/fibroblast growth factor receptor signalling cascade. Mol Cell Neurosci 26, 17–23

    Article  PubMed  CAS  Google Scholar 

  36. Chen S, Mantei N, Dong L, and Schachner M (1999) Prevention of neuronal cell death by neural cell adhesion molecules L1 and CHL1. J Neurobiol 38, 428–439

    Article  PubMed  CAS  Google Scholar 

  37. Ditlevsen DK, Køhler LB, Pedersen MV, Risell M, Kolkova K, Meyer M, et al (2003) The role of phosphatidylinositol 3-kinase in neural cell adhesion molecule–mediated neuronal differentiation and survival. J Neurochem 84, 546–556

    Article  PubMed  CAS  Google Scholar 

  38. Goda Y (2002) Cadherins communicate structural plasticity of presynaptic and postsynaptic terminals. Neuron 35, 1–3

    Article  PubMed  CAS  Google Scholar 

  39. Togashi H, Abe K, Mizoguchi A, Takaoka K, Chisaka O, and Takeichi M (2002) Cadherin regulates dendritic spine morphogenesis. Neuron 35, 77–89

    Article  PubMed  CAS  Google Scholar 

  40. Schachner M (1997) Neural recognition molecules and synaptic plasticity. Curr Opin Cell Biol 9, 627–634

    Article  PubMed  CAS  Google Scholar 

  41. Benson DL, Schnapp LM, Shapiro L, and Huntley GW (2000) Making memories stick: cell adhesion molecules in synaptic plasticity. Trends Cell Biol 10, 473–482

    Article  PubMed  CAS  Google Scholar 

  42. Lüthi A, Laurent JP, Figurov A, Muller D, and Schachner M (1994) Hippocampal long-term potentiation and neural cell adhesion molecules L1 and NCAM. Nature 372, 777–779

    Article  Google Scholar 

  43. Rønn LCB, Bock E, Linnemann D, and Jahnsen H (1995) NCAM-antibodies modulate induction of long-term potentiation in rat hippocampal CA1. Brain Res 677, 145–151

    Article  PubMed  Google Scholar 

  44. Doyle E, Nolan PM, Bell R, and Regan CM (1992) Intraventricular infusions of anti-neural cell adhesion molecules in discrete posttraining period impair consolidation of a passive avoidance response in the rat. J Neurochem 59, 1570–1573

    Article  PubMed  CAS  Google Scholar 

  45. Cremer H, Lange R, Christoph A, Plomann M, Vopper G, Roes J, et al (1994) Inactivation of the NCAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature 367, 455–459

    Article  PubMed  CAS  Google Scholar 

  46. Rønn LCB, Olsen M, Ostergaard S, Kiselyov V, Berezin V, Mortensen MT, et al (1999) Identification of a neuritogenic ligand of the neural cell adhesion molecule using a combinatorial library of synthetic peptides. Nat Biotech 17, 1000–1005

    Article  Google Scholar 

  47. Saffell JL, Walsh FS, and Doherty P (1994) Expression of NCAM containing VASE in neurons can account for a developmental loss in their neuritic outgrowth response to NCAM in a cellular substratum. J Cell Biol 125, 427–436

    Article  PubMed  CAS  Google Scholar 

  48. Kiselyov VV, Skladchikova G, Hinsby AM, Jensen PH, Kulahin N, Soroka V, et al (2003) Structural basis for a direct interaction between FGFR1 and NCAM and evidence for a regulatory role of ATP. Structure 11, 691–701

    Article  PubMed  CAS  Google Scholar 

  49. Cambon K, Hansen SM, Venero C, Herrero AI, Skibo G, Berezin V, et al (2004) A synthetic neural cell adhesion molecule mimetic peptide promotes synaptogenesis, enhances presynaptic function, and facilitates memory consolidation. J Neurosci 24, 4197–4204

    Article  PubMed  CAS  Google Scholar 

  50. Fawcett JW, and Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull 49, 377–391

    Article  PubMed  CAS  Google Scholar 

  51. Schwab ME, and Thoenen H (1985) Dissociated neurons regenerate into sciatic, but not optic nerve explants irrespective of neurotrophic factors. J Neurosci 5, 2415–2423

    PubMed  CAS  Google Scholar 

  52. Schwab ME, and Caroni P (1988) Oligodendrocytes and CNS myelin are nonpermissive substrates for neurite growth and fibroblast spreading in vitro. J Neurosci 8, 2381–2393

    PubMed  CAS  Google Scholar 

  53. Niederöst BP, Zimmermann DR, Schwab ME, and Bandtlow CE (1999) Bovine CNS myelin contains neurite growth-inhibitory activity associated with chondroitin sulphate proteoglycans. J Neurosci 19, 8979–8989

    PubMed  Google Scholar 

  54. Fournier AE, GrandPre T, and Strittmatter SM (2001) Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 409, 341–346

    Article  PubMed  CAS  Google Scholar 

  55. Domeniconi M, Cao Z, Spencer T, Sivasankaran R, Wang K, Nikulina E, et al (2002) Myelin-associated glycoprotein interacts with the nogo66 receptor to inhibit neurite outgrowth. Neuron 35, 283–290

    Article  PubMed  CAS  Google Scholar 

  56. Liu BP, Fournier A, GrandPré T, and Strittmatter SM (2002) Myelin-associated glycoprotein as a functional ligand for the Nogo-66 receptor. Science 297, 1190–1193

    Article  PubMed  CAS  Google Scholar 

  57. Wang KC, Koprivica V, Kim JA, Sivasankaran R, Guo Y, Neve RL, et al (2002) Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 417, 941–944

    Article  PubMed  CAS  Google Scholar 

  58. Wang KC, Kim JA, Sivasankaran R, Segal R, and He Z (2002) p75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG, and OMgp. Nature 420, 74–78

    Article  PubMed  CAS  Google Scholar 

  59. Wong ST, Henley JR, Kanning KC, Huang KH, Bothwell M, and Poo MM (2002) A p75 (NTR) and Nogo receptor complex mediates repulsive signaling by myelin-associated glycoprotein. Nat Neurosci 5, 1302–1308

    Article  PubMed  CAS  Google Scholar 

  60. Lee DHS, Strittmatter SM, and Sah DWY (2003) Targeting the Nogo receptor to treat central nervous system injuries. Nat Rev Drug Discovery 2, 872–879

    Article  CAS  Google Scholar 

  61. Bregman BS, Kunkel-Bagden E, Schnell L, Dai HN, Gao D, and Schwab ME (1995) Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors. Nature 378, 498–501

    Article  PubMed  CAS  Google Scholar 

  62. Thallmair M, Metz GA, Z’Graggen WJ, Raineteau O, Kartje GL, and Schwab ME (1998) Neurite growth inhibitors restrict plasticity and functional recovery following corticospinal tract lesions. Nat Neurosci 1, 124–131

    Article  PubMed  CAS  Google Scholar 

  63. GrandPre T, Li S, and Strittmatter SM (2002) Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature 417, 547–551

    Article  PubMed  CAS  Google Scholar 

  64. Li S, and Strittmatter SM (2003) Delayed systemic Nogo-66 receptor antagonist promotes recovery from spinal cord injury. J Neurosci 23, 4219–4227

    PubMed  CAS  Google Scholar 

  65. Lee J-K, Kim J-E, Sivula M, and Strittmatter SM (2004) Nogo receptor antagonism promotes stroke recovery by enhancing axonal plasticity. J Neurosci 24, 6209–6217

    Article  PubMed  CAS  Google Scholar 

  66. Li W, Walus L, Rabacchi SA, Jirik A, Chang E, Schauer J, (2004) A neutralizing anti-Nogo66 receptor monoclonal antibody reverses inhibition of neurite outgrowth by central nervous system myelin. J Biol Chem 279, 43780–43788

    Article  PubMed  CAS  Google Scholar 

  67. Yu P, Huang L, Zou J, Yu Z, Wang Y, Wang Z, et al (2008) Immunization with recombinant Nogo-66 receptor (NgR) promotes axonal regeneration and recovery of function after spinal cord injury in rats. Neurobiol Dis 32, 535–542

    Article  PubMed  CAS  Google Scholar 

  68. Luo L (2000) Rho GTPases in neuronal morphogenesis. Nat Rev Neurosci 1, 173–180

    Article  PubMed  CAS  Google Scholar 

  69. Bito H, Furuyashiki T, Ishihara H, Shibasaki Y, Ohashi K, Mizuno K (2000) A critical role for Rho-associated kinase, p160ROCK, in determining axonal outgrowth in mammalian CNS neurons. Neuron 26, 431–441

    Article  PubMed  CAS  Google Scholar 

  70. Yamashita T, Higuchi H, and Tohyama M (2002) The p75 receptor transduces the signal from myelin-associated glycoprotein to Rho. J Cell Biol 157, 565–570

    Article  PubMed  CAS  Google Scholar 

  71. Fournier AE, Takizawa BT, and Strittmatter SM (2003) Rho kinase inhibition enhances axonal regeneration in the injured CNS. J Neurosci 23, 1416–1423

    PubMed  CAS  Google Scholar 

  72. Niederöst B, Oertle T, Fritsche J, McKinney RA, and Bandtlow CE (2002) Nogo-A and myelin-associated glycoprotein mediate neurite growth inhibition by antagonistic regulation of RhoA and Rac1. J Neurosci 22, 10368–10376

    PubMed  Google Scholar 

  73. Dergham P, Ellezam B, Essagian C, Avedissian H, Lubell WD, and McKerracher L (2002) Rho signalling pathway targeted to promote spinal cord repair. J Neurosci 22, 6570–6577

    PubMed  CAS  Google Scholar 

  74. Kubo T, Hata, K, Yamaguchi A, and Yamashita T (2007) Rho-ROCK inhibitors as emerging strategies to promote nerve regeneration. Curr Pharm Des 13, 2493–2499

    Article  PubMed  CAS  Google Scholar 

  75. Skaper, S.D., Facci, L., Gilliams, G., Williams, E.-J., Walsh, F.S. and P. Doherty (2004) A dimeric version of the short N-cadherin binding motif HAVDI promotes neuronal cell survival by activating an N-cadherin/fibroblast growth factor receptor signalling cascade. Mol and Cell Neurosc 26, 17–23

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen D. Skaper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Skaper, S.D. (2012). Neuronal Growth-Promoting and Inhibitory Cues in Neuroprotection and Neuroregeneration. In: Skaper, S. (eds) Neurotrophic Factors. Methods in Molecular Biology, vol 846. Humana Press. https://doi.org/10.1007/978-1-61779-536-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-536-7_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-535-0

  • Online ISBN: 978-1-61779-536-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics