Skip to main content

Estimation of Conformational Entropy in Protein–Ligand Interactions: A Computational Perspective

  • Protocol
  • First Online:
Computational Drug Discovery and Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 819))

Abstract

Conformational entropy is an important component of the change in free energy upon binding of a ligand to its target protein. As a consequence, development of computational techniques for reliable estimation of conformational entropies is currently receiving an increased level of attention in the context of computational drug design. Here, we review the most commonly used techniques for conformational entropy estimation from classical molecular dynamics simulations. Although by-and-large still not directly used in practical drug design, these techniques provide a golden standard for developing other, computationally less-demanding methods for such applications, in addition to furthering our understanding of protein–ligand interactions in general. In particular, we focus on the quasi-harmonic approximation and discuss different approaches that can be used to go beyond it, most notably, when it comes to treating anharmonic and/or correlated motions. In addition to reviewing basic theoretical formalisms, we provide a concrete set of steps required to successfully calculate conformational entropy from molecular dynamics simulations, as well as discuss a number of practical issues that may arise in such calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. Chaires, J. B. (2008) Calorimetry and Thermodynamics in Drug Design, Annu Rev Biophys 37, 135–151.

    Article  PubMed  CAS  Google Scholar 

  2. Freire, E. (2008) Do enthalpy and entropy distinguish first in class from best in class? Drug Discov Today 13, 869–874.

    Article  PubMed  CAS  Google Scholar 

  3. Lipinski, C. A. (2000) Drug-like properties and the causes of poor solubility and poor permeability, J Pharmacol Toxicol Methods 44, 235–249.

    Article  PubMed  CAS  Google Scholar 

  4. Go, N., Go, M., and Scheraga, H. A. (1968) Molecular theory of the helix-coil transition in polyamino acids, I. Formulation, Proc Natl Acad Sci USA 59, 1030–1037.

    Article  PubMed  CAS  Google Scholar 

  5. Karplus, M., and Kushick, J. N. (1981) Method for estimating the configurational entropy of macromolecules, Macromolecules 14, 325–332.

    Article  CAS  Google Scholar 

  6. Karplus, M., Ichiye, T., and Pettitt, B. M. (1987) Configurational entropy of native proteins, Biophys J 52, 1083–1085.

    Article  PubMed  CAS  Google Scholar 

  7. Frederick, K. K., Marlow, M. S., Valentine, K. G., and Wand, A. J. (2007) Conformational entropy in molecular recognition by proteins, Nature 448, 325–329.

    Article  PubMed  CAS  Google Scholar 

  8. Tzeng, S. R., and Kalodimos, C. G. (2009) Dynamic activation of an allosteric regulatory protein, Nature 462, 368–372.

    Article  PubMed  CAS  Google Scholar 

  9. Diehl, C., Engstrom, O., Delaine, T., Hakansson, M., Genheden, S., Modig, K., Leffler, H., Ryde, U., Nilsson, U. J., and Akke, M. (2010) Protein flexibility and conformational entropy in ligand design targeting the carbohydrate recognition domain of galectin-3, J Am Chem Soc 132, 14577–14589.

    Article  PubMed  CAS  Google Scholar 

  10. Marlow, M. S., Dogan, J., Frederick, K. K., Valentine, K. G., and Wand, A. J. (2010) The role of conformational entropy in molecular recognition by calmodulin, Nat Chem Biol 6, 352–358.

    Article  PubMed  CAS  Google Scholar 

  11. Chang, C. E., Chen, W., and Gilson, M. K. (2007) Ligand configurational entropy and protein binding, Proc Natl Acad Sci USA 104, 1534–1539.

    Article  PubMed  CAS  Google Scholar 

  12. DeLorbe, J. E., Clements, J. H., Teresk, M. G., Benfield, A. P., Plake, H. R., Millspaugh, L. E., and Martin, S. F. (2009) Thermodynamic and structural effects of conformational constraints in protein-ligand interactions. Entropic paradoxy associated with ligand preorganization, J Am Chem Soc 131, 16758–16770.

    CAS  Google Scholar 

  13. Mann, A. (2003) In: Wermuth CG (ed) The Practice of Medicinal Chemistry, 2nd edn, Academic Press, London.

    Google Scholar 

  14. Sapienza, P. J., and Lee, A. L. (2010) Using NMR to study fast dynamics in proteins: methods and applications, Curr Opin Pharmacol.

    Google Scholar 

  15. Lipari, G., and Szabo, A. (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity, J Am Chem Soc 104, 4546–4559.

    Article  CAS  Google Scholar 

  16. Igumenova, T. I., Frederick, K. K., and Wand, A. J. (2006) Characterization of the fast dynamics of protein amino acid side chains using NMR relaxation in solution, Chem Rev 106, 1672–1699.

    Article  PubMed  CAS  Google Scholar 

  17. Akke, M., Bruschweiler, R., and Palmer, A. G. (1993) Nmr Order Parameters and Free-Energy - an Analytical Approach and Its Application to Cooperative Ca2+ Binding by Calbindin-D(9 k), J Am Chem Soc 115, 9832–9833.

    Article  CAS  Google Scholar 

  18. Li, Z., Raychaudhuri, S., and Wand, A. J. (1996) Insights into the local residual entropy of proteins provided by NMR relaxation, Protein Sci 5, 2647–2650.

    Article  PubMed  CAS  Google Scholar 

  19. Yang, D., and Kay, L. E. (1996) Contributions to conformational entropy arising from bond vector fluctuations measured from NMR-derived order parameters: application to protein folding, J Mol Biol 263, 369–382.

    Article  PubMed  CAS  Google Scholar 

  20. van Gunsteren, W. F., Bakowies, D., Baron, R., Chandrasekhar, I., Christen, M., Daura, X., Gee, P., Geerke, D. P., Glättli, A., Hünenberger, P. H., Kastenholz, M. A., Oostenbrink, C., Schenk, M., Trzesniak, D., van der Vegt, N. F. A., and Yu, H. B. (2006) Biomolecular Modeling: Goals, Problems, Perspectives, Angewandte Chemie International Edition 45, 4064–4092.

    Article  Google Scholar 

  21. Frenkel, D., and Smit, B. (2002) Understanding Molecular Simulations: From Algorithms to Applications, Academic Press, New York

    Google Scholar 

  22. Showalter, S. A., Johnson, E., Rance, M., and Bruschweiler, R. (2007) Toward quantitative interpretation of methyl side-chain dynamics from NMR by molecular dynamics simulations, J Am Chem Soc 129, 14146–14147.

    Article  PubMed  CAS  Google Scholar 

  23. Krishnan, M., and Smith, J. C. (2009) Response of small-scale, methyl rotors to protein-ligand association: a simulation analysis of calmodulin-peptide binding, J Am Chem Soc 131, 10083–10091.

    Article  PubMed  CAS  Google Scholar 

  24. Diehl, C., Genheden, S., Modig, K., Ryde, U., and Akke, M. (2009) Conformational entropy changes upon lactose binding to the carbohydrate recognition domain of galectin-3, J Biomol Nmr 45, 157–169.

    Article  PubMed  CAS  Google Scholar 

  25. Li, D. W., and Bruschweiler, R. (2009) A dictionary for protein side-chain entropies from NMR order parameters, J Am Chem Soc 131, 7226–7227.

    Article  PubMed  CAS  Google Scholar 

  26. Trbovic, N., Cho, J. H., Abel, R., Friesner, R. A., Rance, M., and Palmer, A. G., 3 rd. (2009) Protein side-chain dynamics and residual conformational entropy, J Am Chem Soc 131, 615–622.

    Article  PubMed  CAS  Google Scholar 

  27. Teague, S. J. (2003) Implications of protein flexibility for drug discovery, Nat Rev Drug Discov 2, 527–541.

    Article  PubMed  CAS  Google Scholar 

  28. Cavasotto, C. N., and Orry, A. J. (2007) Ligand docking and structure-based virtual screening in drug discovery, Curr Top Med Chem 7, 1006–1014.

    Article  PubMed  CAS  Google Scholar 

  29. B-Rao, C., Subramanian, J., and Sharma, S. D. (2009) Managing protein flexibility in docking and its applications, Drug Discov Today 14, 394–400.

    Article  PubMed  CAS  Google Scholar 

  30. Chang, M. W., Belew, R. K., Carroll, K. S., Olson, A. J., and Goodsell, D. S. (2008) Empirical entropic contributions in computational docking: evaluation in APS reductase complexes, J Comput Chem 29, 1753–1761.

    Article  PubMed  CAS  Google Scholar 

  31. Huang, S. Y., and Zou, X. (2010) Inclusion of solvation and entropy in the knowledge-based scoring function for protein-ligand interactions, J Chem Inf Model 50, 262–273.

    Article  PubMed  CAS  Google Scholar 

  32. Cosconati, S., Forli, S., Perryman, A. L., Harris, R., Goodsell, D. S., and Olson, A. J. (2010) Virtual screening with AutoDock: theory and practice, Expert Opin Drug Discov 5, 597–607.

    Article  PubMed  CAS  Google Scholar 

  33. Baron, R., and McCammon, J. A. (2008) (Thermo)dynamic role of receptor flexibility, entropy, and motional correlation in protein-ligand binding, Chemphyschem 9, 983–988.

    Article  PubMed  CAS  Google Scholar 

  34. Crespo, A., and Fernandez, A. (2008) Induced disorder in protein-ligand complexes as a drug-design strategy, Mol Pharm 5, 430–437.

    Article  PubMed  CAS  Google Scholar 

  35. Edholm, O., and Berendsen, H. J. C. (1984) Entropy estimation from simulations of non-diffusive systems, Mol Phys 51, 1011–1028.

    Article  CAS  Google Scholar 

  36. Schlitter, J. (1993) Estimation of absolute and relative entropies of macromolecules using the covariance matrix, Chem Phys Lett 215, 617–621.

    Article  CAS  Google Scholar 

  37. Andricioaei, I., and Karplus, M. (2001) On the calculation of entropy from covariance matrices of the atomic fluctuations, J Chem Phys 115, 6289.

    Article  CAS  Google Scholar 

  38. Baron, R., van Gunsteren, W. F., and Hünenberger, P. H. (2006) Estimating the configurational entropy from molecular dynamics simulations: Anharmonicity and correlation corrections to the quasi-harmonic approximation, Trends Phys Chem 11, 87–122.

    CAS  Google Scholar 

  39. Zhou, H. X., and Gilson, M. K. (2009) Theory of free energy and entropy in noncovalent binding, Chem Rev 109, 4092–4107.

    Article  PubMed  CAS  Google Scholar 

  40. Meirovitch, H. (2010) Methods for calculating the absolute entropy and free energy of biological systems based on ideas from polymer physics, J Mol Recognit 23, 153–172.

    PubMed  CAS  Google Scholar 

  41. Zhang, J., and Liu, J. S. (2006) On Side-Chain Conformational Entropy of Proteins, PLoS Comp Biol 2, e168.

    Article  Google Scholar 

  42. Meirovitch, H. (2007) Recent developments in methodologies for calculating the entropy and free energy of biological systems by computer simulation, Curr Opin Struct Biol 17, 181–186.

    Article  PubMed  CAS  Google Scholar 

  43. Irudayam, S. J., and Henchman, R. H. (2009) Entropic cost of protein-ligand binding and its dependence on the entropy in solution, J Phys Chem B 113, 5871–5884.

    Article  PubMed  CAS  Google Scholar 

  44. Wlodek, S., Skillman, A. G., and Nicholls, A. (2010) Ligand Entropy in Gas-Phase, Upon Solvation and Protein Complexation. Fast Estimation with Quasi-Newton Hessian, J Chem Theory Comput 6, 2140–2152.

    CAS  Google Scholar 

  45. Hnizdo, V., and Gilson, M. K. (2010) Thermodynamic and Differential Entropy under a Change of Variables, Entropy-Switz 12, 578–590.

    Article  Google Scholar 

  46. Killian, B. J., Yundenfreund Kravitz, J., and Gilson, M. K. (2007) Extraction of configurational entropy from molecular simulations via an expansion approximation, J Chem Phys 127, 024107.

    Article  PubMed  Google Scholar 

  47. Li, D.-W., and Brüschweiler, R. (2009) In silico Relationship between Configurational Entropy and Soft Degrees of Freedom in Proteins and Peptides, Phys Rev Lett 102, 118108.

    Article  PubMed  Google Scholar 

  48. Schafer, H., Daura, X., Mark, A. E., and van Gunsteren, W. F. (2001) Entropy calculations on a reversibly folding peptide: changes in solute free energy cannot explain folding behavior, Proteins 43, 45–56.

    Article  PubMed  CAS  Google Scholar 

  49. Baron, R., Hunenberger, P. H., and McCammon, J. A. (2009) Absolute Single-Molecule Entropies from Quasi-Harmonic Analysis of Microsecond Molecular Dynamics: Correction Terms and Convergence Properties, J Chem Theory Comput 5, 3150–3160.

    Article  PubMed  CAS  Google Scholar 

  50. Wang, J., and Brüschweiler, R. (2006) 2D Entropy of Discrete Molecular Ensembles, J Chem Theory Comput 2, 18–24.

    Article  CAS  Google Scholar 

  51. Killian, B. J., Kravitz, J. Y., Somani, S., Dasgupta, P., Pang, Y.-P., and Gilson, M. K. (2009) Configurational Entropy in Protein–Peptide Binding:Computational Study of Tsg101 Ubiquitin E2 Variant Domain with an HIV-Derived PTAP Nonapeptide, J Mol Biol 389, 315–335.

    Article  PubMed  CAS  Google Scholar 

  52. DuBay, K. H., and Geissler, P. L. (2009) Calculation of Proteins’ Total Side-Chain Torsional Entropy and Its Influence on Protein–Ligand Interactions, J Mol Biol 391, 484–497.

    Article  PubMed  CAS  Google Scholar 

  53. Cover, T.M., and Thomas, J.A. (2006) Elements of Information Theory 2nd edn, Wiley-Interscience, New Jersey.

    Google Scholar 

  54. Hensen, U., Lange, O. F., and Grubmuller, H. (2010) Estimating absolute configurational entropies of macromolecules: the minimally coupled subspace approach, PLoS One 5, e9179.

    Article  PubMed  Google Scholar 

  55. Li, D.-W., Khanlarzadeh, M., Wang, J., Huo, S., and Brüschweiler, R. (2007) Evaluation of Configurational Entropy Methods from Peptide Folding − Unfolding Simulation, J Phys Chem B 111, 13807–13813.

    Article  PubMed  CAS  Google Scholar 

  56. Numata, J., Wan, M., and Knapp, E.-W. (2007) Conformational Entropy of Biomolecules: Beyond the Quasi-Harmonic Approximation. Genome Inform 18, 192205.

    Article  PubMed  CAS  Google Scholar 

  57. Hnizdo, V., Tan, J., Killian, B. J., and Gilson, M. K. (2008) Efficient calculation of configurational entropy from molecular simulations by combining the mutual-information expansion and nearest-neighbor methods, J Comput Chem 29, 1605–1614.

    Article  PubMed  CAS  Google Scholar 

  58. Hess, B., Kutzner, C., van der Spoel, D., and Lindahl, E. (2008) GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation, J Chem Theory Comput 4, 435–447.

    CAS  Google Scholar 

  59. Berendsen, H. J. C., Postma, J.P.M, van Gunsteren, W. F., and Hermans, J. (1981) In: Pullman B (ed) Interaction models for water in relation to protein hydration, Reidel, Dordrecht.

    Google Scholar 

  60. van Gunsteren, W. F., Billeter, S. R., Eising, A. A. Huenenberger, P. H., Krueger, P., Mark, A.E., Scott, W. R. P., and Tironi, I.G. (1996) Biomolecular simulation: The GROMOS96 Manual and User Guide, Verlag der Fachvereine, Zürich.

    Google Scholar 

  61. Schuler, L. D., Daura, X., and van Gunsteren, W. F. (2001) An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase, J Comput Chem 22, 1205–1218.

    Article  CAS  Google Scholar 

  62. Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., and Haak, J. R. (1984) Molecular dynamics with coupling to an external bath, J Chem Phys 81, 3684.

    Article  CAS  Google Scholar 

  63. Guvench, O., and MacKerell, A. D., Jr. (2008) Comparison of protein force fields for molecular dynamics simulations, Methods Mol Biol 443, 63–88.

    Article  PubMed  CAS  Google Scholar 

  64. Kuzmanic, A., and Zagrovic, B. (2010) Determination of ensemble-average pairwise root mean-square deviation from experimental B-factors, Biophys J 98, 861–871.

    Article  PubMed  CAS  Google Scholar 

  65. Bartels, R. H., and Golub, G. H. (1969) The simplex method of linear programming using LU decomposition, Commun ACM 12, 266–268.

    Article  Google Scholar 

  66. Gō, N., and Scheraga, H. A. (1976) On the Use of Classical Statistical Mechanics in the Treatment of Polymer Chain Conformation, Macromolecules 9, 535–542.

    Article  Google Scholar 

  67. Zagrovic, B., and van Gunsteren, W. F. (2007) Computational Analysis of the Mechanism and Thermodynamics of Inhibition of Phosphodiesterase 5A by Synthetic Ligands, J Chem Theory Comput 3, 301–311.

    Article  CAS  Google Scholar 

  68. Perić-Hassler, L., Hansen, H. S., Baron, R., and Hünenberger, P. H. (2010) Conformational properties of glucose-based disaccharides investigated using molecular dynamics simulations with local elevation umbrella sampling, Carbohyd Res 345, 1781–1801.

    Article  Google Scholar 

  69. Chang, C.-E., Chen, W., and Gilson, M. K. (2005) Evaluating the Accuracy of the Quasiharmonic Approximation, J Chem Theory Comput 1, 1017–1028.

    Article  CAS  Google Scholar 

  70. Shimazaki, H., and Shinomoto, S. (2007) A Method for Selecting the Bin Size of a Time Histogram, Neural Comput 19, 1503–1527.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bojan Zagrovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Polyansky, A.A., Zubac, R., Zagrovic, B. (2012). Estimation of Conformational Entropy in Protein–Ligand Interactions: A Computational Perspective. In: Baron, R. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 819. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-465-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-465-0_21

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-464-3

  • Online ISBN: 978-1-61779-465-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics