Skip to main content

Functional Analysis of Rho GTPase Activation and Inhibition in a Bead-Based Miniaturized Format

  • Protocol
  • First Online:
Rho GTPases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 827))

Abstract

Extensive knowledge about protein–protein interactions is fundamental to fully understand signaling pathways and for the development of new drugs. Rho GTPases are key molecules in cellular signaling processes and their deregulation is implicated in the development of a variety of diseases such as neurofibromatosis type 2 and cancer. Here, we describe a bead-based protein–protein interaction assay for overexpressed HA-tagged Rho GTPases to study the GTPγS-dependent interaction with the regulatory protein RhoGDIα. This assay provides a useful tool for the analysis of both macromolecular and small molecule activators and inhibitors of the protein–protein interactions of Rho GTPases with their regulatory proteins in a multiplexed miniaturized format.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ellenbroek, S.I., and Collard, J.G. (2007) Rho GTPases: functions and association with cancer. Clin Exp Metastasis 24, 657–672.

    Article  PubMed  CAS  Google Scholar 

  2. Okada, T., Lopez-Lago, M., and Giancotti, F.G. (2005) Merlin/NF-2 mediates contact inhibition of growth by suppressing recruitment of Rac to the plasma membrane. J Cell Biol 171, 361–371.

    Article  PubMed  CAS  Google Scholar 

  3. Van Aelst, L., and D’Souza-Schorey, C. (1997) Rho GTPases and signaling networks. Genes Dev 11, 2295–2322.

    Article  PubMed  Google Scholar 

  4. Wennerberg, K., and Der, C.J. (2004) Rho-family GTPases: it’s not only Rac and Rho (and I like it). J Cell Sci 117, 1301–1312.

    Article  PubMed  CAS  Google Scholar 

  5. Schmohl, M., Rimmele, S., Pötz, O., Kloog, Y., Gierschik, P., Joos, T.O., Schneiderhan-Marra, N. (2010) Protein-protein-interactions in a multiplexed, miniaturized format a functional analysis of Rho GTPase activation and inhibition. Proteomics 10, 1716–1720.

    Article  PubMed  CAS  Google Scholar 

  6. Kloog, Y., and Cox, A.D. (2004) Prenyl-binding domains: potential targets for Ras inhibitors and anti-cancer drugs. Semin Cancer Biol 14, 253–261.

    Article  PubMed  CAS  Google Scholar 

  7. Hoffman, G.R., Nassar, N., and Cerione, R.A. (2000) Structure of the Rho family GTP-binding protein Cdc42 in complex with the multifunctional regulator RhoGDI. Cell 100, 345–356.

    Article  PubMed  CAS  Google Scholar 

  8. Rimmele, S., Gierschik, P., Joos, T.O., and Schneiderhan-Marra, N. (2010) Bead-based protein-protein interaction assays for the analysis of Rho GTPase signaling. J Mol Recognit 23, 543–550.

    Article  PubMed  CAS  Google Scholar 

  9. Cornelis, G.R. (2002) Yersinia type III secretion: send in the effectors. J Cell Biol 158, 401–408.

    Article  PubMed  CAS  Google Scholar 

  10. Cornelis, G.R., (2002) The Yersinia Ysc-Yop ‘type III’ weaponry. Nat Rev Mol Cell Biol 3, 742–752.

    Article  PubMed  CAS  Google Scholar 

  11. Fueller, F., and Schmidt, G. (2008) The polybasic region of Rho GTPases defines the cleavage by Yersinia enterocolitica outer protein T (YopT). Protein Sci 17, 1456–1462.

    Article  PubMed  CAS  Google Scholar 

  12. Shao, F. (2008) Biochemical functions of Yersinia type III effectors. Curr Opin Microbiol 11, 21–29.

    Article  PubMed  CAS  Google Scholar 

  13. Shao, F., Vacratsis, P.O., Bao, Z., Bowers, K.E., Fierke, C.A., and Dixon, J.E. (2003) Biochemical characterization of the Yersinia YopT protease: cleavage site and recognition elements in Rho GTPases. Proc Natl Acad Sci USA 100, 904–909.

    Article  PubMed  CAS  Google Scholar 

  14. Shao, F., Merritt, P.M., Bao, Z., Innes, R.W., and Dixon, J.E. (2002) A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis. Cell 109, 575–588.

    Article  PubMed  CAS  Google Scholar 

  15. Aepfelbacher, M., Trasak, C., Wilharm, G., Wiedemann, A., Trulzsch, K., Krauss, K., Gierschik, P., and Heesemann, J. (2003) Characterization of YopT effects on Rho GTPases in Yersinia enterocolitica-infected cells. J Biol Chem 278, 33217–33223.

    Article  PubMed  CAS  Google Scholar 

  16. Fueller, F., Bergo, M.O., Young, S.G., Aktories, K., and Schmidt, G. (2006) Endoproteolytic processing of RhoA by Rce1 is required for the cleavage of RhoA by Yersinia enterocolitica outer protein T. Infect Immun 74, 1712–1717.

    Article  PubMed  CAS  Google Scholar 

  17. Cerione, R.A., Leonard, D., and Zheng, Y. (1995) Purification of baculovirus-expressed Cdc42Hs. Methods Enzymol 256, 11–15.

    Article  PubMed  CAS  Google Scholar 

  18. Rimmele, S., Gierschik, P., Joos, T.O., and Schneiderhan-Marra, N. (2010) Bead-based protein-protein interaction assays for the analysis of Rho GTPase signaling. J Mol Recognit 23, 543–550.

    Article  PubMed  CAS  Google Scholar 

  19. Poetz, O., Schneiderhan-Marra, N., Henzler, T., Herget, T., and Joos, T. O. (2011) Receptor tyrosine kinase inhibitor profiling using bead-based multiplex sandwich immunoassays. In Kuester, B. (ed) Kinase Inhibitors. Springer, New York.

    Google Scholar 

  20. Chuang, T.H., Bohl, B.P., and Bokoch, G.M. (1993) Biologically active lipids are regulators of Rac.GDI complexation. J Biol Chem 268, 26206–26211.

    PubMed  CAS  Google Scholar 

  21. Mondal, M.S., Wang, Z., Seeds, A.M., and Rando, R.R. (2000) The specific binding of small molecule isoprenoids to rho GDP dissociation inhibitor (rhoGDI). Biochemistry 39, 406–412.

    Article  PubMed  CAS  Google Scholar 

  22. Caruso, M.E., Jenna, S., Beaulne, S., Lee, E.H., Bergeron, A., Chauve, C., Roby, P., Rual, J.F., Hill, D.E., Vidal, M., Bossé, R., and Chevet, E. (2005) Biochemical clustering of monomeric GTPases of the Ras superfamily. Mol Cell Proteomics 4, 936–944.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG), grants JO 687/2-1 and GI138/5-1. We are grateful to Prof. Yoel Kloog, Department of Neurobiochemistry, Tel Aviv University, Israel, for providing the prenyl derivatives.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Schneiderhan-Marra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Schmohl, M., Rimmele, S., Gierschik, P., Joos, T.O., Schneiderhan-Marra, N. (2012). Functional Analysis of Rho GTPase Activation and Inhibition in a Bead-Based Miniaturized Format. In: Rivero, F. (eds) Rho GTPases. Methods in Molecular Biology, vol 827. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-442-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-442-1_18

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-441-4

  • Online ISBN: 978-1-61779-442-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics