Skip to main content

The In Vivo Evaluation of Active-Site TOR Inhibitors in Models of BCR-ABL+ Leukemia

  • Protocol
  • First Online:
mTOR

Part of the book series: Methods in Molecular Biology ((MIMB,volume 821))

Abstract

Preclinical evaluation of candidate anticancer compounds requires appropriate animal models. Most commonly, solid tumor xenograft systems are employed in which immunocompromised mice are implanted with human cancer cell lines. Genetically engineered mouse models of solid tumors are also frequently employed. Both of these approaches can also be applied to studies of hematological malignancies. In this chapter, we describe three types of mouse models of leukemia driven by the human BCR-ABL oncogene. We also discuss the application of these models to preclinical testing of active-site TOR inhibitors, a novel class of compounds that selectively target the ATP-binding pocket of the target of rapamycin (TOR) kinase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sparks, C. A., and Guertin, D. A. (2010) Targeting mTOR: prospects for mTOR complex 2 inhibitors in cancer therapy, Oncogene 29, 3733–3744.

    Article  PubMed  CAS  Google Scholar 

  2. Janes, M. R., and Fruman, D. A. (2010) Targeting TOR dependence in cancer, OncoTarget 1, 69–76.

    PubMed  Google Scholar 

  3. Bhagwat, S. V., and Crew, A. P. (2010) Novel inhibitors of mTORC1 and mTORC2, Curr Opin Investig Drugs 11, 638–645.

    PubMed  CAS  Google Scholar 

  4. Guertin, D. A., and Sabatini, D. M. (2009) The pharmacology of mTOR inhibition, Sci Signal 2, pe24.

    Google Scholar 

  5. Thomson, A. W., Turnquist, H. R., and Raimondi, G. (2009) Immunoregulatory functions of mTOR inhibition, Nat Rev Immunol 9, 324–337.

    Article  PubMed  CAS  Google Scholar 

  6. Weichhart, T., and Saemann, M. D. (2009) The multiple facets of mTOR in immunity, Trends Immunol 30, 218–226.

    Article  PubMed  CAS  Google Scholar 

  7. Sarbassov, D. D., Ali, S. M., Kim, D. H., Guertin, D. A., Latek, R. R., Erdjument-Bromage, H., Tempst, P., and Sabatini, D. M. (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton, Curr Biol 14, 1296–1302.

    Article  PubMed  CAS  Google Scholar 

  8. Thoreen, C. C., and Sabatini, D. M. (2009) Rapamycin inhibits mTORC1, but not completely, Autophagy 5, 725–726.

    Article  PubMed  CAS  Google Scholar 

  9. Feldman, M. E., Apsel, B., Uotila, A., Loewith, R., Knight, Z. A., Ruggero, D., and Shokat, K. M. (2009) Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2, PLoS Biol 7, e38.

    Article  PubMed  Google Scholar 

  10. Thoreen, C. C., Kang, S. A., Chang, J. W., Liu, Q., Zhang, J., Gao, Y., Reichling, L. J., Sim, T., Sabatini, D. M., and Gray, N. S. (2009) An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1, J Biol Chem 284, 8023–8032.

    Article  PubMed  CAS  Google Scholar 

  11. Yu, K., Shi, C., Toral-Barza, L., Lucas, J., Shor, B., Kim, J. E., Zhang, W. G., Mahoney, R., Gaydos, C., Tardio, L., Kim, S. K., Conant, R., Curran, K., Kaplan, J., Verheijen, J., Ayral-Kaloustian, S., Mansour, T. S., Abraham, R. T., Zask, A., and Gibbons, J. J. (2010) Beyond rapalog therapy: preclinical pharmacology and antitumor activity of WYE-125132, an ATP-competitive and specific inhibitor of mTORC1 and mTORC2, Cancer Res 70, 621–631.

    Article  PubMed  CAS  Google Scholar 

  12. Yu, K., Toral-Barza, L., Shi, C., Zhang, W. G., Lucas, J., Shor, B., Kim, J., Verheijen, J., Curran, K., Malwitz, D. J., Cole, D. C., Ellingboe, J., Ayral-Kaloustian, S., Mansour, T. S., Gibbons, J. J., Abraham, R. T., Nowak, P., and Zask, A. (2009) Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin, Cancer Res 69, 6232–6240.

    Article  PubMed  CAS  Google Scholar 

  13. Chresta, C. M., Davies, B. R., Hickson, I., Harding, T., Cosulich, S., Critchlow, S. E., Vincent, J. P., Ellston, R., Jones, D., Sini, P., James, D., Howard, Z., Dudley, P., Hughes, G., Smith, L., Maguire, S., Hummersone, M., Malagu, K., Menear, K., Jenkins, R., Jacobsen, M., Smith, G. C., Guichard, S., and Pass, M. (2010) AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity, Cancer Res 70, 288–298.

    Article  PubMed  CAS  Google Scholar 

  14. Janes, M. R., Limon, J. J., So, L., Chen, J., Lim, R. J., Chavez, M. A., Vu, C., Lilly, M. B., Mallya, S., Ong, S. T., Konopleva, M., Martin, M. B., Ren, P., Liu, Y., Rommel, C., and Fruman, D. A. (2010) Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor, Nat Med 16, 205–213.

    Article  PubMed  CAS  Google Scholar 

  15. Vu, C., and Fruman, D. A. (2010) Target of rapamycin signaling in leukemia and lymphoma, Clin Cancer Res 16, 5374–5380.

    Article  PubMed  CAS  Google Scholar 

  16. Sawyers, C. L. (1999) Chronic myeloid leukemia, N Engl J Med 340, 1330–1340.

    Article  PubMed  CAS  Google Scholar 

  17. Li, S., Ilaria, R. L., Jr., Million, R. P., Daley, G. Q., and Van Etten, R. A. (1999) The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity, The J Exp Med 189, 1399–1412.

    Article  PubMed  CAS  Google Scholar 

  18. Kharas, M. G., Janes, M. R., Scarfone, V. M., Lilly, M. B., Knight, Z. A., Shokat, K. M., and Fruman, D. A. (2008) Ablation of PI3K blocks BCR-ABL leukemogenesis in mice, and a dual PI3K/mTOR inhibitor prevents expansion of human BCR-ABL+ leukemia cells, J Clin Invest 118, 3038–3050.

    Article  PubMed  CAS  Google Scholar 

  19. Cox, C. V., Evely, R. S., Oakhill, A., Pamphilon, D. H., Goulden, N. J., and Blair, A. (2004) Characterization of acute lymphoblastic ­leukemia progenitor cells, Blood 104, 2919–2925.

    Article  PubMed  CAS  Google Scholar 

  20. Castor, A., Nilsson, L., Astrand-Grundstrom, I., Buitenhuis, M., Ramirez, C., Anderson, K., Strombeck, B., Garwicz, S., Bekassy, A. N., Schmiegelow, K., Lausen, B., Hokland, P., Lehmann, S., Juliusson, G., Johansson, B., and Jacobsen, S. E. (2005) Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia, Nat Med 11, 630–637.

    Article  PubMed  CAS  Google Scholar 

  21. le Viseur, C., Hotfilder, M., Bomken, S., Wilson, K., Rottgers, S., Schrauder, A., Rosemann, A., Irving, J., Stam, R. W., Shultz, L. D., Harbott, J., Jurgens, H., Schrappe, M., Pieters, R., and Vormoor, J. (2008) In childhood acute lymphoblastic leukemia, blasts at different stages of immunophenotypic maturation have stem cell properties, Cancer Cell 14, 47–58.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Christian Rommel, Yi Liu, Pingda Ren, and Troy Wilson for the chemical synthesis and technical support with PP242 before it was commercially available. We also thank Andrew Miller for technical advice with NSG mice and Collin Vu for experimental assistance with primary human xenografts. We thank Marina Konopleva and Michael Lilly for access to primary human leukemia samples. Studies of TOR inhibitors in our laboratory have been supported by Intellikine, Inc., and by a Discovery Grant from the University of California Industry-University Cooperative Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Fruman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Janes, M.R., Fruman, D.A. (2012). The In Vivo Evaluation of Active-Site TOR Inhibitors in Models of BCR-ABL+ Leukemia. In: Weichhart, T. (eds) mTOR. Methods in Molecular Biology, vol 821. Humana Press. https://doi.org/10.1007/978-1-61779-430-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-430-8_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-429-2

  • Online ISBN: 978-1-61779-430-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics