Skip to main content

Dissecting the Linkage Between Transcription Factor Self-Assembly and Site-Specific DNA Binding: The Role of the Analytical Ultracentrifuge

  • Protocol
  • First Online:
Allostery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 796))

Abstract

A long-standing goal of biomedical research has been to determine the quantitative mechanisms responsible for gene regulation and transcriptional activation. These events occur through numerous protein–protein and protein–DNA interactions, many of which are allosterically coupled. For systems where highly purified protein is available, analytical ultracentrifugation provides a means to study these linked reactions, allosteric or otherwise. Sedimentation velocity is an ultracentrifugation technique that provides rigorous insight into protein self-association, homogeneity, and gross structure. Because self-association is often in dynamic equilibrium with other reactions such as DNA binding, an explicit and independent analysis of each interaction is critical to revealing mechanism. This chapter details a protocol for using sedimentation velocity to dissect the linkage between transcription factor self-association and site-specific DNA binding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heneghan, A. F., Connaghan-Jones, K. D., Miura, M. T., and Bain, D. L. (2007) Coactivator assembly at the promoter: efficient recruitment of SRC2 is coupled to cooperative DNA binding by the progesterone receptor. Biochemistry 46, 11023–32.

    Article  PubMed  CAS  Google Scholar 

  2. Connaghan, K. D., Heneghan, A. F., Miura, M. T., and Bain, D. L. (2010) Na(+) and K(+) allosterically regulate cooperative DNA binding by the human progesterone receptor. Biochemistry 49, 422–31.

    Article  PubMed  CAS  Google Scholar 

  3. Connaghan-Jones, K. D., Heneghan, A. F., Miura, M. T., and Bain, D. L. (2008) Thermodynamic dissection of progesterone receptor interactions at the mouse mammary tumor virus promoter: monomer binding and strong cooperativity dominate the assembly reaction. J Mol Biol 377, 1144–60.

    Article  PubMed  CAS  Google Scholar 

  4. Ackers, G. K., Johnson, A. D., and Shea, M. A. (1982) Quantitative model for gene regulation by lambda phage repressor. Proc Natl Acad Sci U S A 79, 1129–33.

    Article  PubMed  CAS  Google Scholar 

  5. Bain, D. L., Heneghan, A. F., Connaghan-Jones, K. D., and Miura, M. T. (2007) Nuclear receptor structure: implications for function. Annu Rev Physiol 69, 201–20.

    Article  PubMed  CAS  Google Scholar 

  6. Tsai, M. J., and O’Malley, B. W. (1994) Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem 63, 451–86.

    Article  PubMed  CAS  Google Scholar 

  7. Wyman, J., Gill, S. J. (1990) Binding and linkage: functional chemistry of biological macromolecules, University Science Books, Mill Valley, CA.

    Google Scholar 

  8. Heneghan, A. F., Connaghan-Jones, K. D., Miura, M. T., and Bain, D. L. (2006) Cooperative DNA binding by the B-isoform of human progesterone receptor: thermodynamic analysis reveals strongly favorable and unfavorable contributions to assembly. Biochemistry 45, 3285–96.

    Article  PubMed  CAS  Google Scholar 

  9. Heyduk, T., Ma, Y., Tang, H., and Ebright, R. H. (1996) Fluorescence anisotropy: rapid, quantitative assay for protein-DNA and protein-protein interaction. Methods Enzymol 274, 492–503.

    Article  PubMed  CAS  Google Scholar 

  10. Jameson, D. M., and Sawyer, W. H. (1995) Fluorescence anisotropy applied to biomolecular interactions. Methods Enzymol 246, 283–300.

    Article  PubMed  CAS  Google Scholar 

  11. Beckett, D., Koblan, K. S., and Ackers, G. K. (1991) Quantitative study of protein association at picomolar concentrations: the lambda phage cl repressor. Anal Biochem 196, 69–75.

    Article  PubMed  CAS  Google Scholar 

  12. Laue, T. M. (1995) Sedimentation equilibrium as thermodynamic tool. Methods Enzymol 259, 427–52.

    Article  PubMed  CAS  Google Scholar 

  13. Connaghan-Jones, K. D., Heneghan, A. F., Miura, M. T., and Bain, D. L. (2006) Hydrodynamic analysis of the human progesterone receptor A-isoform reveals that self-association occurs in the micromolar range. Biochemistry 45, 12090–9.

    Article  PubMed  CAS  Google Scholar 

  14. Correia, J. J. Analysis of tubulin oligomers by analytical ultracentrifugation. Methods Cell Biol 95, 275–88.

    Google Scholar 

  15. Balbo, A., Zhao, H., Brown, P. H., and Schuck, P. (2009) Assembly, loading, and alignment of an analytical ultracentrifuge sample cell. J Vis Exp.

    Google Scholar 

  16. Demeler, B., Brookes, E., Wang, R., Schirf, V., and Kim, C. A. (2010) Characterization of Reversible Associations by Sedimentation Velocity with UltraScan. Macromol Biosci 10, 775–82.

    Google Scholar 

  17. Schuck, P., and Rossmanith, P. (2000) Determination of the sedimentation coefficient distribution by least-squares boundary modeling. Biopolymers 54, 328–41.

    Article  PubMed  CAS  Google Scholar 

  18. Philo, J. S. (2000) A method for directly fitting the time derivative of sedimentation velocity data and an alternative algorithm for calculating sedimentation coefficient distribution functions. Anal Biochem 279, 151–63.

    Article  PubMed  CAS  Google Scholar 

  19. Philo, J. S. (1994) Measuring sedimentation, diffusion, and molecular weights of small moleules by direct fitting of sedimentation velocity concentration profiles, in Modern analytical ultracentrifugation (Schuster, T. M., and Laue, T. M., Eds.) pp 156–170, Birkhauser, Boston.

    Google Scholar 

  20. Stafford, W. F. (2000) Analysis of reversibly interacting macromolecular systems by time derivative sedimentation velocity. Methods Enzymol 323, 302–25.

    Article  PubMed  CAS  Google Scholar 

  21. Schuck, P. (2003) On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation. Anal Biochem 320, 104–24.

    Article  PubMed  CAS  Google Scholar 

  22. Schuck, P. (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J 78, 1606–19.

    Article  PubMed  CAS  Google Scholar 

  23. MacGregor, I. K., Anderson, A. L., and Laue, T. M. (2004) Fluorescence detection for the XLI analytical ultracentrifuge. Biophys Chem 108, 165–85.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Michael T. Miura and Keith D. Connaghan. This work was supported by NIH grant DK061933 and the Avon Foundation for Women.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Bain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Moody, A.D., Robblee, J.P., Bain, D.L. (2012). Dissecting the Linkage Between Transcription Factor Self-Assembly and Site-Specific DNA Binding: The Role of the Analytical Ultracentrifuge. In: Fenton, A. (eds) Allostery. Methods in Molecular Biology, vol 796. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-334-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-334-9_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-333-2

  • Online ISBN: 978-1-61779-334-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics