Skip to main content

Restriction Landmark Genome Scanning

  • Protocol
  • First Online:
Epigenetics Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 791))

Abstract

Restriction landmark genome scanning (RLGS) method is a high-resolution two-dimensional electrophoresis system for analyses of the whole genome DNA which is including methylation status. It has been used for cloning genes of model animals and human genomes, detection of imprinted genes, and genome-wide methylation research in cancer. The conventional RLGS detected both polymorphism and methylated NotI sites between samples. Here, we have developed improved RLGS method with isoschizomer restriction enzymes such as MspI and HpaII to specifically detect methylated sites, using differential sensitivity of the restriction enzymes to methylated sequences. Recently, by using the genome database information, the RLGS spot sites were efficiently identified by this improved method. Then, genome methylation sites of Arabidopsis were mapped, and a unique inheritance was detected in methylated gene in rice. Now, epigenetic research becomes easy with the improved RLGS and it also can be applied for animal genome. Therefore, RLGS method is useful to explore for novel epigenetic phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Monk, M., Boubelik, M., and Lehnert, S. (1987) Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development 99, 371–382.

    PubMed  CAS  Google Scholar 

  2. Tada, S., Tada, T., Lefebvre, L., Barton, S. C., and Surani, M. A. (1997) Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. The EMBO Journal 16, 6510–6520.

    Article  PubMed  CAS  Google Scholar 

  3. Bender, J. and Fink, G. R. (1995) Epigenetic control of an endogenous gene family is revealed by a novel blue fluorescent mutant of Arabidopsis. Cell 83, 725–734.

    Article  PubMed  CAS  Google Scholar 

  4. Jacobsen, S. E. and Meyerowitz, E. M. (1997) Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science 277, 1100–1103.

    Article  PubMed  CAS  Google Scholar 

  5. Kakutani, T., Munakata, K., Richards, E. J., and Hirochika, H. (1999) Meiotically and mitotically stable inheritance of DNA hypomethylation induced by ddm1 mutation of Arabidopsis thaliana. Genetics 151, 831–838.

    PubMed  CAS  Google Scholar 

  6. Matzke, M. A., Mittelsten Scheid, O., and Matzke, A. J. (1999) Rapid structural and epigenetic changes in polyploid and aneuploid genomes. Bioessays 21, 761–767.

    Article  PubMed  CAS  Google Scholar 

  7. Wendel, J. F. (2000) Genome evolution in polyploids. Plant Mol. Biol. 42, 225–249.

    Article  PubMed  CAS  Google Scholar 

  8. Shaked, H., Kashkush, K., Ozkan, H., Feldman, M., and Levy, A. A. (2001) Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 13, 1749–1759.

    Article  PubMed  CAS  Google Scholar 

  9. Madlung, A., Masuelli, R. W., Watson, B., Reynolds, S. H., Davison, J., and Comai, L. (2002) Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids. Plant Physiol. 129, 733–746.

    Article  PubMed  CAS  Google Scholar 

  10. Pikaard, C. S. (2001) Genomic change and gene silencing in polyploids. Trends Genet. 17, 675–677.

    Article  PubMed  CAS  Google Scholar 

  11. Comai, L., Madlung, A., Josefsson, C., and Tyagi, A. (2003) Do the different parental ‘heteromes’ cause genomic shock in newly formed allopolyploids? Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 1149–1155.

    Article  PubMed  CAS  Google Scholar 

  12. Akimoto, K., Katakami, H., kim, H. J., Ogawa, E., Sano, C. M., Wada, Y., et al. (2007) Epigenetic inheritance in rice plants. Ann. Bot. 100, 205–217.

    Google Scholar 

  13. Liu, Z., Wang, Y., Shen, Y., Guo, W., Hao, S., and Liu, B. (2004) Extensive alterations in DNA methylation and transcription in rice caused by introgression from Zizania latifolia. Plant Molecular Biology 54, 571–582.

    Article  PubMed  CAS  Google Scholar 

  14. Dong, Z. Y., Wang, Y. M., Zhang, Z. J., Shen, Y., Lin, X. Y., Ou, X. F., et al. (2006) Extent and pattern of DNA methylation alteration in rice lines derived from introgressive hybridization of rice and Zizania latifolia Griseb. Ther. Appl. Genet. 113, 196–205.

    Article  CAS  Google Scholar 

  15. Grossniklaus, U., Vielle–Calzada, J. P., Hoeppner, M. A., and Gagliano, W. B. (1998) Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science 280, 446–450.

    Google Scholar 

  16. Kiyosue, T., Ohad, N., Yadegari, R., Hannon, M., Dinneny, J., Wells, D., et al. (1999) Control of fertilization–independent endosperm development by the MEDEA polycomb gene in Arabidopsis. Proc. Natl. Acad. Sci. USA 96, 4186–4191.

    Article  PubMed  CAS  Google Scholar 

  17. Kinoshita, T., Yadegari, R., Harada, J. J., Goldberg, R. B., and Fischer, R. L. (1999) Imprinting of the MEDEA polycomb gene in the Arabidopsis endosperm. Plant Cell 11, 1945–1952.

    Article  PubMed  CAS  Google Scholar 

  18. Choi, Y., Gehring, M., Johnson, L., Hannon, M., Harada, J. J., Goldberg, R. B., et al. (2002) DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 110, 33–42.

    Article  PubMed  CAS  Google Scholar 

  19. Xiao, W., Gehring, M., Choi, Y., Margossian, L., Pu, H., Harada, J. J., et al. (2003) Imprinting of the MEA Polycomb gene is controlled by antagonism between MET1 methyltransferase and DME glycosylase. Dev. Cell 5, 891–901.

    Article  PubMed  CAS  Google Scholar 

  20. Kohler, C., Hennig, L., Spillane, C., Pien, S., Gruissem, W., and Grossniklaus, U. (2003) The Polycomb–group protein MEDEA ­regulates seed development by controlling expression of the MADS–box gene PHERES1. Genes Dev. 17, 1540–1553.

    Google Scholar 

  21. Scott, R. J. and Spielman, M., (2004) Epigenetics: imprinting in plants and mammals–the same but different? Curr. Biol. 14, R201–R203.

    Article  PubMed  CAS  Google Scholar 

  22. Kohler, C., Page, D. R., Gagliardini, V., and Grassniklaus, U. (2005) The Arabidopsis thaliana MEDEA Polycomb group protein controls expression of PHERES1 by parental imprinting. Nat. Genet. 37, 28–30.

    PubMed  Google Scholar 

  23. Baroux, C., Gagliadini, V., Page, D. R., and Grassniklaus, U. (2006) Dynamic regulatory interactions of Polycomb group genes: MEDEA autoregulation is required for imprinted gene expression in Arabidopsis. Genes Dev. 20, 1081–1086.

    Article  PubMed  CAS  Google Scholar 

  24. Gehring, M., Huh, J. H., Hsieh, T. F., Penterman, J., Choi, Y., Harada, J. J., et al. (2006) DEMETER DNA glycosylase establishes MEDEA polycomb gene self–imprinting by allele–specific demethylation. Cell 124, 495–506.

    Article  PubMed  CAS  Google Scholar 

  25. Marcaud, L., Reynaud, C. A., Therwath, A., and Scherrer, K. (1981) Modification of the methylation pattern in the vicinity of the chicken globin genes in avian erythroblastosis virus transformed cells. Nucleic Acids Res. 9, 1841–1851.

    Article  PubMed  CAS  Google Scholar 

  26. Herman, J. G., Graff, J. R., Myohanen, S., Nelkin, B. D., and Baylin, S. B. (1996) Methylation–specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. USA 93, 9821–9826.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang, X., Yazaki, J., Sundaresan, A., Cokus, S., Chan, S. W., Henderson, I. R., et al. (2006) Genome–wide high–resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 126, 1189–1201.

    Article  PubMed  CAS  Google Scholar 

  28. Hatada, I., Hayashizaki, Y., Hirotsune, S., Komatsubara, H., and Mukai, T. (1991) A genomic scanning method for higher organisms using restriction sites as landmarks. Proc. Natl. Acad. Sci. U S A 88, 9523–9527.

    Article  PubMed  CAS  Google Scholar 

  29. Hayashizaki, Y. and Watanabe, S. (Eds.), (1997) Restriction landmark genomic scanning (RLGS), Springer Verlag, Tokyo, pp. 1–179.

    Google Scholar 

  30. Reyna–Lopez, G. E., Simpson, J., and Ruiz–Herrera, J. (1997) Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Mol. Gen. Genet. 253, 703–710.

    Google Scholar 

  31. Xiong, L. Z., Xu, C. G., Saghai Maroof, M. A., and Zhang, Q. (1999) Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation–­sensitive amplification polymorphism technique. Mol. Gen. Genet. 261, 439–446.

    Article  PubMed  CAS  Google Scholar 

  32. Okuizumi, H., Okazaki, Y., Ohsumi, T., Hayashizaki, Y., Plass, C., and Chapman, V. M. (1995) Genetic mapping of restriction landmark genomic scanning loci in the mouse. Electrophoresis 16, 233–240.

    Article  PubMed  CAS  Google Scholar 

  33. Okuizumi, H., Okazaki, Y., Ohsumi, T., Hanami, T., Mizuno, Y., Muramatsu, M., et al. (1995) A single gel analysis of 575 dominant and codominant restriction landmark genomic scanning loci in mice interspecific backcross progeny. Electrophoresis 16, 253–260.

    Article  PubMed  CAS  Google Scholar 

  34. Ohsumi, T., Okazaki, Y., Okuizumi, H., Shibata, K., Hanami, T., Mizuno, Y., et al. (1995) Loss of heterozygosity in chromosomes 1, 5, 7 and 13 in mouse hepatoma detected by systematic genome–wide scanning using RLGS genetic map. Biochem. Biophys. Res. Commun. 212, 632–639.

    Article  PubMed  CAS  Google Scholar 

  35. Miwa, W., Yashima, K., Sekine, T., and Sekiya, T. (1995) Demethylation of a repetitive DNA sequence in human cancers. Electrophoresis 16, 227–232.

    Article  PubMed  CAS  Google Scholar 

  36. Hayashizaki, Y., Shibata, H., Hirotsune, S., Sugino, H., Okazaki, Y., Sasaki, N., et al. (1994) Identification of an imprinted U2af binding protein related sequence on mouse chromosome 11 using the RLGS method. Nature Genetics 6, 33–40.

    Article  PubMed  CAS  Google Scholar 

  37. Shibata, H., Yoshino, K., Muramatsu, M., Plass, C., Chapman, V. M., and Hayashizaki, Y. (1995) The use of restriction landmark genomic scanning to scan the mouse genome for endogenous loci with imprinted patterns of methylation. Electrophoresis 16, 210–217.

    Article  PubMed  CAS  Google Scholar 

  38. Plass, C., Shibata, H., Kalcheva, I., Mullins, L., Kotelevtseva, N., Mullins, J., et al. (1996) Identification of Grf1 on mouse chromosome 9 as an imprinted gene by RLGS–M. Nat. Genet. 14, 106–109.

    Article  PubMed  CAS  Google Scholar 

  39. Watanabe, S., Kawai, J., Hirotsune, S., Suzuki, H., Hirose, K., Taga, C., et al. (1995) Accessibility to tissue–specific genes from methylation profiles of mouse brain genomic DNA. Electrophoresis 16, 218–226.

    Article  PubMed  CAS  Google Scholar 

  40. Bird, A. (1992) The essentials of DNA methylation. Cell 70, 5–8.

    Article  PubMed  CAS  Google Scholar 

  41. Takamiya, T., Hosobuchi, S., Asai, K., Nakamura, E., Tomioka, K., Kawase, M., et al. (2006) Restriction landmark genome scanning method using isoschizomers (MspI/HpaII) for DNA methylation analysis. Electrophoresis 27, 2846–2856.

    Article  PubMed  CAS  Google Scholar 

  42. Takamiya, T., Ohtake, Y., Hosobuchi, S., Noguchi, T., Kawase, M., Murakami, Y., et al. (2008) Application of RLGS method for detection of alteration in tissue cultured plants. JARQ. 42, 151–155.

    CAS  Google Scholar 

  43. Takamiya, T., Hosobuchi, S., Noguchi, T., Asai, K., Nakamura, E., Habu, Y., et al. (2008) Inheritance and alteration of genome methylation in F1 hybrid rice. Electrophoresis 29, 4088–4095.

    Article  PubMed  CAS  Google Scholar 

  44. Takamiya, T., Hosobuchi, S., Noguchi, T., Paterson, A. H., Iijima, H., Murakami, Y., et al. (2009) The application of restriction landmark genome scanning method for surveillance of non–Mendelian inheritance in F1 hybrids. Comparative and Functional Genomics 2009.

    Google Scholar 

  45. Kawase, M. (1994) Application of the restriction landmark genomic scanning (RLGS) method to rice cultivars as a new fingerprinting technique. Theor. Appl. Genet. 89, 861–864.

    Article  CAS  Google Scholar 

  46. Okamoto, H., Takamiya, T., Saito, A., Domon, E., Iimura, K., Tomioka, K., et al. (2006) Development of a new cultivar–discrimination method based on DNA polymorphism in a vegetatively propagated crop. JARQ. 40, 65–69.

    CAS  Google Scholar 

  47. Matsuyama, T. (2008) Epigenetics : use of in silico genome scanning by the virtual image restriction landmark method. FEBS journal 275, 1607.

    Article  PubMed  CAS  Google Scholar 

  48. International Rice Genome Sequencing Project (2005) The map–based sequence of the rice genome. Nature 436, 793–800.

    Article  Google Scholar 

  49. Southern, E. M. (1979) Measurement of DNA length by gel electrophoresis. Anal. Biochem. 100, 319–323.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Paterson, A. H., Nishiguchi, M., Kakutani, T., Mizuno, Y., Yamashita, H., Nakamura, E., Asai, K., Higo, K., Hirochika H., Kawase, M., Tomioka, K., Habu, Y., Ohtake, Y., Ueda, T., Murakami, Y., Iijima, H., Takahashi, S., Nonaka, E., Nakamura, M., Hosobuchi, S., Noguchi, T., Saguchi, T., Fujita, T., and Seetharam, K., for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisato Okuizumi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Okuizumi, H., Takamiya, T., Okazaki, Y., Hayashizaki, Y. (2011). Restriction Landmark Genome Scanning. In: Tollefsbol, T. (eds) Epigenetics Protocols. Methods in Molecular Biology, vol 791. Humana Press. https://doi.org/10.1007/978-1-61779-316-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-316-5_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-315-8

  • Online ISBN: 978-1-61779-316-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics