Skip to main content

A Single-Molecule Approach to Visualize the Unwinding Activity of DNA Helicases

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 778))

Abstract

Almost all aspects of DNA metabolism involve separation of double-stranded DNA catalyzed by helicases. Observation and measurement of the dynamics of these events at the single-molecule level provide important mechanistic details of helicase activity and give the opportunity to probe aspects that are not revealed in bulk solution measurements. The assay, presented here, provides information about helicase unwinding rates and processivity. Visualization is achieved by using a fluorescent single-stranded DNA-binding protein (SSB), which allows the time course of individual DNA unwinding events to be observed using total internal reflection fluorescence microscopy. Observation of a prototypical helicase, Bacillus subtilis AddAB, shows that the unwinding process consists of bursts of unwinding activity, interspersed with periods of pausing.

An erratum to this chapter is available at http://dx.doi.org/10.1007/978-1-61779-261-8_19

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-61779-261-8_19

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Singleton, M. R., Dillingham, M. S., and Wigley, D. B. (2007) Structure and mechanism of helicases and nucleic acid translocases. Annu. Rev. Biochem. 76, 23–50.

    Article  PubMed  CAS  Google Scholar 

  2. Bianco, P. R., and Kowalczykowski, S. C. (1997) The recombination hotspot Chi is recognized by the translocating RecBCD enzyme as the single strand of DNA containing the sequence 5′-GCTGGTGG-3′. Proc. Natl. Acad. Sci. USA 94, 6706–6711.

    Article  PubMed  CAS  Google Scholar 

  3. Dohoney, K. M., and Gelles, J. (2001) Chi-sequence recognition and DNA translocation by single RecBCD helicase/nuclease molecules. Nature 409, 370–374.

    Article  PubMed  CAS  Google Scholar 

  4. Dumont, S., Cheng, W., Serebrov, V., Beran, R. K., Tinoco, I., Jr., Pyle, A. M., and Bustamante, C. (2006) RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP. Nature 439, 105–108.

    Article  PubMed  CAS  Google Scholar 

  5. Myong, S., Bruno, M. M., Pyle, A. M., and Ha, T. (2007) Spring-loaded mechanism of DNA unwinding by hepatitis C virus NS3 helicase. Science 317, 513–516.

    Article  PubMed  CAS  Google Scholar 

  6. Perkins, T. T., Li, H. W., Dalal, R. V., Gelles, J., and Block, S. M. (2004) Forward and reverse motion of single RecBCD molecules on DNA. Biophys. J. 86, 1640–1648.

    Article  PubMed  CAS  Google Scholar 

  7. Spies, M., Dillingham, M. S., and Kowalczykowski, S. C. (2005) Translocation by the RecB motor is an absolute requirement for {chi}-recognition and RecA protein loading by RecBCD enzyme J. Biol. Chem. 280, 37078–37087.

    Google Scholar 

  8. Fili, N., Mashanov, G. I., Toseland, C. P., Batters, C., Wallace, M. I., Yeeles, J. T., Dillingham, M. S., Webb, M. R., and Molloy, J. E. (2010) Visualizing helicases unwinding DNA at the single molecule level. Nucleic Acids Res. 38, 4448–4457.

    Article  PubMed  CAS  Google Scholar 

  9. Lohman, T. M., and Ferrari, M. E. (1994) Escherichia coli single-stranded DNA-binding protein: multiple DNA-binding modes and cooperativities. Annu. Rev. Biochem. 63, 527–570.

    Article  PubMed  CAS  Google Scholar 

  10. Raghunathan, S., Kozlov, A. G., Lohman, T. M., and Waksman, G. (2000) Structure of the DNA binding domain of E. coli SSB bound to ssDNA. Nat. Struct. Biol. 7, 648–652.

    Article  PubMed  CAS  Google Scholar 

  11. Akerman, B., and Tuite, E. (1996) Single- and double-strand photocleavage of DNA by YO, YOYO and TOTO. Nucleic Acids Res. 24, 1080–1090.

    Article  PubMed  CAS  Google Scholar 

  12. Eggleston, A. K., Rahim, N. A., and Kowalczykowski, S. C. (1996) A helicase assay based on the displacement of fluorescent, nucleic acid-binding ligands. Nucleic Acids Res. 24, 1179–1186.

    Article  PubMed  CAS  Google Scholar 

  13. Dillingham, M. S., Tibbles, K. L., Hunter, J. L., Bell, J. C., Kowalczykowski, S. C., and Webb, M. R. (2008) Fluorescent single-stranded DNA binding protein as a probe for sensitive, real-time assays of helicase activity. Biophys. J. 95, 3330–3339.

    Article  PubMed  CAS  Google Scholar 

  14. Chedin, F., Seitz, E. M., and Kowalczykowski, S. C. (1998) Novel homologs of replication protein A in archaea: implications for the evolution of ssDNA-binding proteins. Trends Biochem. Sci. 23, 273–277.

    Article  PubMed  CAS  Google Scholar 

  15. Soultanas, P., Dillingham, M. S., Papadopoulos, F., Phillips, S. E., Thomas, C. D., and Wigley, D. B. (1999) Plasmid replication initiator protein RepD increases the processivity of PcrA DNA helicase. Nucleic Acids Res. 27, 1421–1428.

    Article  PubMed  CAS  Google Scholar 

  16. Spies, M., Bianco, P. R., Dillingham, M. S., Handa, N., Baskin, R. J., and Kowalczykowski, S. C. (2003) A molecular throttle: the recombination hotspot chi controls DNA translocation by the RecBCD helicase. Cell 114, 647–654.

    Article  PubMed  CAS  Google Scholar 

  17. Dillingham, M. S., Wigley, D. B., and Webb, M. R. (2000) Demonstration of unidirectional single-stranded DNA translocation by PcrA helicase: measurement of step size and translocation speed. Biochemistry 39, 205–212.

    Article  PubMed  CAS  Google Scholar 

  18. Dillingham, M. S., Wigley, D. B., and Webb, M. R. (2002) Direct measurement of single-stranded DNA translocation by PcrA helicase using the fluorescent base analogue 2-aminopurine. Biochemistry 41, 643–651.

    Article  PubMed  CAS  Google Scholar 

  19. Slatter, A. F., Thomas, C. D., and Webb, M. R. (2009) PcrA helicase tightly couples ATP hydrolysis to unwinding double-stranded DNA, modulated by the initiator protein for plasmid replication, RepD. Biochemistry 48, 6326–6334.

    Article  PubMed  CAS  Google Scholar 

  20. Kunzelmann, S., Morris, C., Chavda, A. P., Eccleston, J. F., and Webb, M. R. Mechanism of interaction between single-stranded DNA binding protein and DNA. Biochemistry 49, 843–852.

    Google Scholar 

  21. Rasnik, I., McKinney, S. A., and Ha, T. (2005) Surfaces and orientations: much to FRET about? Acc. Chem. Res. 38, 542–548.

    Article  PubMed  CAS  Google Scholar 

  22. Visnapuu, M. L., Duzdevich, D., and Greene, E. C. (2008) The importance of surfaces in single-molecule bioscience. Mol. Biosyst. 4, 394–403.

    Article  PubMed  CAS  Google Scholar 

  23. Paul R. Selvin, T. H. (2008) Single-molecule techniques: a laboratory manual

    Google Scholar 

  24. Rasnik, I., McKinney, S. A., and Ha, T. (2006) Nonblinking and long-lasting single-molecule fluorescence imaging. Nat. Methods 3, 891–893.

    Article  PubMed  CAS  Google Scholar 

  25. Vogelsang, J., Kasper, R., Steinhauer, C., Person, B., Heilemann, M., Sauer, M., and Tinnefeld, P. (2008) A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes. Angew Chem. Int. Ed. Engl. 47, 5465–5469.

    Article  PubMed  CAS  Google Scholar 

  26. Atkinson, J., Guy, C. P., Cadman, C. J., Moolenaar, G. F., Goosen, N., and McGlynn, P. (2009) Stimulation of UvrD helicase by UvrAB. J. Biol. Chem. 284, 9612–9623.

    Article  PubMed  CAS  Google Scholar 

  27. Cadman, C. J., and McGlynn, P. (2004) PriA helicase and SSB interact physically and functionally. Nucleic Acids Res. 32, 6378–6387.

    Article  PubMed  CAS  Google Scholar 

  28. Shereda, R. D., Bernstein, D. A., and Keck, J. L. (2007) A central role for SSB in Escherichia coli RecQ DNA helicase function. J. Biol. Chem. 282, 19247–19258.

    Article  PubMed  CAS  Google Scholar 

  29. Webb, M. R. (2010) Fluorescent biosensors to investigate helicase activity. Methods Mol. Biol. 587, 13–27.

    Article  PubMed  CAS  Google Scholar 

  30. Skinner, G. M., Baumann, C. G., Quinn, D. M., Molloy, J. E., and Hoggett, J. G. (2004) Promoter binding, initiation, and elongation by bacteriophage T7 RNA polymerase. A single-molecule view of the transcription cycle. J. Biol. Chem. 279, 3239–3244.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Fili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fili, N., Toseland, C.P., Dillingham, M.S., Webb, M.R., Molloy, J.E. (2011). A Single-Molecule Approach to Visualize the Unwinding Activity of DNA Helicases . In: Mashanov, G., Batters, C. (eds) Single Molecule Enzymology. Methods in Molecular Biology, vol 778. Humana Press. https://doi.org/10.1007/978-1-61779-261-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-261-8_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-260-1

  • Online ISBN: 978-1-61779-261-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics