Skip to main content

Analysis of Lipid Content and Quality in Arabidopsis Plastids

  • Protocol
  • First Online:
Chloroplast Research in Arabidopsis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 775))

Abstract

Chloroplasts of plants contain an intricate membrane system, the thylakoids, which harbor the complexes of the photosynthetic machinery. Chloroplasts are confined by two membranes, the inner and outer envelope. The major glycerolipids of chloroplasts are the glycolipids monogalactosyl diacylglycerol (MGD), digalactosyl diacylglycerol (DGD), and sulfoquinovosyl diacylglycerol (SQD). Furthermore, two phospholipids, phosphatidyl glycerol (PG) and phosphatidyl choline (PC), are found in chloroplast membranes. The photosystems and light-harvesting complexes in the thylakoids are rich in photosynthetic pigments (chlorophyll, carotenoids, and xanthophylls) and contain a unique set of prenylquinol lipids (tocochromanol/vitamin E, plastoquinol, and phylloquinol/vitamin K1). In this chapter, methods for the isolation and quantification of chloroplast and leaf glycerolipids and prenylquinol lipids are presented. Glycerolipids are separated by thin-layer chromatography prior to conversion of the fatty acids into methyl esters. Fatty acid methyl esters are subsequently quantified by gas chromatography. Prenylquinol lipids are separated by HPLC and quantified by UV absorption (plastoquinol) or fluorescence (tocochromanol, phylloquinol).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siebertz, H. P., Heinz, E., Linscheid, M., Joyard, J., and Douce, R. (1979) Characterization of lipids from chloroplast envelopes. Eur. J. Biochem. 101, 429–438.

    Google Scholar 

  2. Browse, J., and Somerville, C. (1991) Glycerolipid synthesis: Biochemistry and regulation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 467–506.

    Google Scholar 

  3. Browse, J., Warwick, N., Somerville, C. R., and Slack, C. R. (1986) Fluxes through the prokaryotic and eukaryotic pathways of lipid synthesis in the ‘16:3’ plant Arabidopsis thaliana. Biochem. J. 235, 25–31.

    Google Scholar 

  4. Heinz, E., and Roughan, P. G. (1983) Similarities and differences in lipid metabolism of chloroplasts isolated from 18:3 and 16:3 plants. Plant Physiol. 72, 273–279.

    Google Scholar 

  5. Härtel, H., Dörmann, P., and Benning, C. (2000) DGD1-independent biosynthesis of extraplastidic galactolipids after phosphate deprivation in Arabidopsis. Proc. Natl. Acad. Sci. USA 97, 10649–10654.

    Google Scholar 

  6. Kelly, A. A., Froehlich, J. E., and Dörmann, P. (2003) Disruption of the two digalactosyldiacylglycerol synthase genes DGD1 and DGD2 in Arabidopsis reveals the existence of an additional enzyme of galactolipid synthesis. Plant Cell 15, 2694–2706.

    Google Scholar 

  7. Christie, W. W., Gill, S., Nordbäck, J., Itabash, Y., Sanda, S., and Slabas, A. R. (1998) New procedures for rapid screening of leaf lipid components from Arabidopsis. Phytochem. Anal. 9, 53–57.

    Google Scholar 

  8. Browse, J., McCourt, P. J., and Somerville, C. R. (1986) Fatty acid composition of leaf lipids determined after combined digestion and fatty acid methyl ester formation from fresh tissue. Anal. Biochem. 152, 141–145.

    Google Scholar 

  9. Benning, C., and Somerville, C. R. (1992) Isolation and genetic complementation of a sulfolipid-deficient mutant of Rhodobacter sphaeroides. J. Bacteriol. 174, 2352–2360.

    Google Scholar 

  10. Welti, R., Li, W., Li, M., Sang, Y., Biesiada, H., Zhou, H.-E., Rajashekar, C., Williams, T., and Wang, X. (2002) Profiling membrane lipids in plant stress responses. Role of phospholipase Dα in freezing-induced lipid changes in Arabidopsis. J. Biol. Chem. 277, 31994–32002.

    Google Scholar 

  11. Zbierzak, A., Kanwischer, M., Wille, C., Vidi, P.-A., Giavalisco, P., Lohmann, A., Briesen, I., Porfirova, S., Bréhélin, C., Kessler, F., and Dörmann, P. (2010) Intersection of the tocopherol and plastoquinol metabolic pathways at the plastoglobule. Biochem. J. 425, 389–399.

    Google Scholar 

  12. Lichtenthaler, H., Prenzel, U., Douce, R., and Joyard, J. (1981) Localization of prenylquinones in the envelope of spinach chloroplasts. Biochim. Biophys. Acta 641, 99–105.

    Google Scholar 

  13. Soll, J., Schultz, G., Joyard, J., Douce, R., and Block, M. A. (1985) Localization and synthesis of prenylquinones in isolated outer and inner envelope membranes from spinach chloroplasts. Arch. Biochem. Biophys. 238, 290–299.

    Google Scholar 

  14. Food and Nutrition Board, Institute of Medicine (2003) Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. Natl. Acad. Press, Washington, D.C., USA, pp. 162–196.

    Google Scholar 

  15. Vidi, P. A., Kanwischer, M., Baginsky, S., Austin, J. R., Csucs, G., Dörmann, P., Kessler, F., and Brehelin, C. (2006) Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles. J. Biol. Chem. 281 1122511234.

    Google Scholar 

  16. Lohmann, A., Schöttler, M. A., Bréhélin, C., Kessler, F., Bock, R., Cahoon, E. B., and Dörmann, P. (2006) Deficiency in phylloquinone (vitamin K1) methylation affects prenyl quinone distribution, photosystem I abundance and anthocyanin accumulation in the Arabidopsis AtmenG mutant. J. Biol. Chem. 281, 40461–40472.

    Google Scholar 

  17. Fryer, M. J. (1992) The antioxidant effects of thylakoid vitamin E (α-tocopherol). Plant Cell Environ. 15, 381–392.

    Google Scholar 

  18. Sattler, S. E., Gilliland, L. U., Magallanes-Lundback, M., Pollard, M., and DellaPenna, D. (2004) Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. Plant Cell 16, 1419–1432.

    Google Scholar 

  19. Maeda, H., Sakuragi, Y., Bryant, D. A., and DellaPenna, D. (2005) Tocopherols protect Synechocystis sp. strain PCC 6803 from lipid peroxidation. Plant Physiol. 138, 1422–1435.

    Google Scholar 

  20. Jordan, P., Fromme, P., Witt, H. T., Klukas, O., Saenger, W., and Krauss, N. (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411, 909–917.

    Google Scholar 

  21. Ben-Shem, A., Frolow, F., and Nelson, N. (2003) Crystal structure of plant photosystem I. Nature 426, 630–635.

    Google Scholar 

  22. Fyfe, P. K., Hughes, A. V., Heathcote, P., and Jones, M. R. (2005) Proteins, chlorophylls and lipids: X-ray analysis of a three-way relationship. Trends Plant Sci. 10, 275–282.

    Google Scholar 

  23. Knaff, D. B., Malkin, R., Myron, J. C., and Stoller, M. (1977) The role of plastoquinone and β-carotene in the primary reaction of plant photosystem II. Biochim. Biophys. Acta 11, 402–411.

    Google Scholar 

  24. Whittle, K. J., Dunphy, P. J., and Pennock J. E. (1965) Plastochromanol in the leaves of Hevea brasiliensis. Biochem. J. 96, 17c–19c.

    Google Scholar 

  25. DellaPenna, D., and Pogson, B. J. (2006) Vitamin synthesis in plants: tocopherols and carotenoids. Annu. Rev. Plant Biol. 57, 711–738.

    Google Scholar 

  26. Cahoon, E. B., Hall, S. E., Ripp, K. G., Ganzke, T. S., Hitz, W. D., and Coughlan, S. J. (2003) Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nature Biotechnol. 21, 1082–1087.

    Google Scholar 

  27. Aitzetmüller, K. (1997) Antioxidative effects of Carum seeds. J. Am. Oil Chem. Soc. 74, 185.

    Google Scholar 

  28. Porfirova, S., Bergmüller, E., Tropf, S., Lemke, R., and Dörmann, P. (2002) Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proc. Natl. Acad. Sci. USA 99, 12495–12500.

    Google Scholar 

  29. Fiehn, O., Kopka, J., Trethewey, R. N., and Willmitzer, L. (2000) Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal. Chem. 72, 3573–3580.

    Google Scholar 

  30. Dörmann, P., Hoffmann-Benning, S., Balbo, I., and Benning, C. (1995) Isolation and characterization of an Arabidopsis mutant deficient in the thylakoid lipid digalactosyl diacylglycerol. Plant Cell 7, 1801–1810.

    Google Scholar 

  31. Balz, M., Schulte, E., and Thier, H.-P. (1992) Trennung von Tocopherolen and Tocotrienolen durch HPLC. Fat Sci. Technol. 94, 209–213.

    Google Scholar 

  32. Schüep, W., and Rettenmeier, R. (1994) Analysis of vitamin E homologs in plasma and tissue: high-performance liquid chromatography. Meth. Enzymol. 234, 294–302.

    Google Scholar 

  33. Leerbeck, E., Søndergaard, E., and Dam, H. (1967) Occurrence of a plastochromanol in linseed oil. Acta Chem. Scand. 21, 2582.

    Google Scholar 

  34. Jakob, E., and Elmadfa, I. (1996) Application of a simplified HPLC assay for the determination of phylloquinone (vitamin K1) in animal and plant food items. Food Chem. 56, 87–91.

    Google Scholar 

  35. Dawson, R. M. C., Elliott, D. C., Elliott, W. H., and Jones, K. M. (1985) Data for Biochemical Research. Oxford University Press, Oxford, UK.

    Google Scholar 

  36. Bligh, E. G., and Dyer, W. J. (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917.

    Google Scholar 

  37. Hölzl, G., Leipelt, M., Ott, C., Zähringer, U., Lindner, B., Warnecke, D., and Heinz, E. (2005) Processive lipid galactosyl/glucosyltransferases from Agrobacterium tumefaciens and Mesorhizobium loti display multiple specificities. Glycobiol. 15, 874–886.

    Google Scholar 

  38. Grether-Beck, S., Bonizzi, G., Schmitt-Brenden, H., Felsner, I., Timmer, A., Sies, H., Johnson, J. P., Piette, J., and Krutmann, J. (2000) Non-enzymatic triggering of the ceramide signalling cascade by solar UVA radiation. EMBO J. 19, 5793–5800.

    Google Scholar 

  39. Weerheim, A. M., Kolb, A. M., Sturk, A., and Nieuwland, R. (2002) Phospholipid composition of cell-derived microparticles determined by one-dimensional high-performance thin-layer chromatography. Anal. Biochem. 302, 191–198.

    Google Scholar 

  40. Domergue, F., Abbadi, A., Ott, C., Zank, T. K., Zähringer, U., and Heinz, E. (2003) Acyl carriers used as substrates by the desaturases and elongases involved in very long-chain polyunsaturated fatty acids biosynthesis reconstituted in yeast. J. Biol. Chem. 278, 35115–35126.

    Google Scholar 

  41. Thompson, J. N. a. H., G. (1979) Determination of tocopherols and tocotrienols in foods and tissues by high performance lipid chromatography. J. Liquid Chromatog. 2, 327–344.

    Google Scholar 

  42. Johnson, T. W., Shen G., Zybailov, B., Kolling, D., Reategui, R., Beauparlant, S., Vassiliev, I. R., Bryant, D. A., Jones, A. D., Golbeck, J. H., and Chitnis, P. R. (2000) Recruitment of a foreign quinone into the A1 site of photosystem I. I. Genetic and physiological characterization of phylloquinone biosynthetic pathway mutants in Synechocystis sp. PCC 6803. J. Biol. Chem. 275, 8523–8530.

    Google Scholar 

  43. Collakova, E., and DellaPenna, D. (2003) Homogentisate phytyltransferase activity is limiting for tocopherol biosynthesis in Arabidopsis. Plant Physiol. 131, 632–642.

    Google Scholar 

  44. Yoshida, K., Shibata, M., Terashima, I., and Noguchi, K. (2010) Simultaneous determination of in vivo plastoquinone and ubiquinone redox states by HPLC-based analysis. Plant Cell Physiol. 51, 836–841.

    Google Scholar 

  45. Hölzl, G., Witt, S., Gaude, N., Melzer, M., Schöttler, M. A., and Dörmann, P. (2009) The role of diglycosyl lipids in photosynthesis and membrane lipid homeostasis in Arabidopsis. Plant Physiol. 150, 1147–1159.

    Google Scholar 

  46. Moreau, P., Bessoule, J. J., Mongrand, S., Testet, E., Vincent, P., and Cassagne, C. (1998) Lipid trafficking in plant cells. Prog. Lipid Res. 37, 371–391.

    Google Scholar 

  47. Miquel, M., and Browse, J. (1992) Arabidopsis mutants deficient in polyunsaturated fatty acid synthesis. Biochemical and genetic characterization of a plant oleoyl-phosphatidylcholine desaturase. J. Biol. Chem. 267, 1502–1509.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Dörmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zbierzak, A.M., Dörmann, P., Hölzl, G. (2011). Analysis of Lipid Content and Quality in Arabidopsis Plastids. In: Jarvis, R. (eds) Chloroplast Research in Arabidopsis. Methods in Molecular Biology, vol 775. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-237-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-237-3_22

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-236-6

  • Online ISBN: 978-1-61779-237-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics