Skip to main content

Lipid-Core-Peptide System for Self-Adjuvanting Synthetic Vaccine Delivery

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 751))

Abstract

Disadvantages of classical vaccines, such as the risk of an autoimmune reaction, might be overcome by using a subunit vaccine containing the minimal microbial components necessary to stimulate appropriate immune responses. However, vaccines based on minimal epitopes suffer from poor immunogenicity and require the use of an additional immunostimulant (adjuvant). Only a few adjuvants have been permitted for use with vaccines intended for human administration. We have developed several vaccine candidates based on a lipid-core-peptide (LCP) system. This system has self-adjuvanting properties, and it can be used for the delivery of a variety of epitopes to produce vaccine candidates against a targeted disease. The LCP system is easily assembled by simple stepwise Boc solid-phase peptide synthesis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Zhong, W., Skwarczynski, M., and Toth, I. (2009) Lipid Core Peptide System for Gene, Drug, and Vaccine Delivery, Aust. J. Chem. 62, 956–967.

    Article  CAS  Google Scholar 

  2. Moyle, P. M., and Toth, I. (2008) Self-adjuvanting lipopeptide vaccines, Curr. Med. Chem. 15, 506–516.

    Article  PubMed  CAS  Google Scholar 

  3. Zhong, W., Skwarczynski, M., Fujita, Y., Simerska, P., Good, M. F., and Toth, I. (2009) Design and Synthesis of Lipopeptide-Carbohydrate Assembled Multivalent Vaccine Candidates Using Native Chemical Ligation, Aust. J. Chem. 62, 993–999.

    Article  CAS  Google Scholar 

  4. Zhong, W., Skwarczynski, M., Simerska, P., Good, M. F., and Toth, I. (2009) Development of highly pure alpha-helical lipoglycopeptides as self-adjuvanting vaccines, Tetrahedron 65, 3459–3464.

    Article  CAS  Google Scholar 

  5. Fujita, Y., Moyle, P. M., Hieu, S., Simerska, P., and Toth, I. (2008) Investigation toward multi-epitope vaccine candidates using native chemical ligation, Biopolymers 90, 624–632.

    Article  PubMed  CAS  Google Scholar 

  6. Moyle, P. M., Olive, C., Ho, M. F., Good, M. F., and Toth, I. (2006) Synthesis of a highly pure lipid core peptide based self-adjuvanting triepitopic group A Streptococcal vaccine, and subsequent immunological evaluation, J. Med. Chem. 49, 6364–6370.

    Article  PubMed  CAS  Google Scholar 

  7. Simerska, P., Abdel-Aal, A. B. M., Fujita, Y., Moyle, P. M., McGeary, R. P., Batzloff, M. R., Olive, C., Good, M. F., and Toth, I. (2008) Development of a liposaccharide-based delivery system and its application to the design of group a streptococcal vaccines, J. Med. Chem. 51, 1447–1452.

    Article  PubMed  CAS  Google Scholar 

  8. Moyle, P. M., Olive, C., Karpati, L., Barozzi, N., Ho, M. F., Dyer, J., Sun, H. K., Good, M., and Toth, I. (2005) Synthesis and immunological evaluation of M protein targeted tetra-valent and tri-valent group A streptococcal vaccine candidates based on the lipid-core peptide system, Int. J. Pept. Res. Ther. 12, 317–326.

    Article  Google Scholar 

  9. Hayman, W. A., Toth, I., Flinn, N., Scanlon, M., and Good, M. F. (2002) Enhancing the immunogenicity and modulating the fine epitope recognition of antisera to a helical group A streptococcal peptide vaccine candidate from the M protein using lipid-core peptide technology, Immunol. Cell Biol. 80, 178–187.

    Article  PubMed  CAS  Google Scholar 

  10. Abdel-Aal, A. B. M., Batzloff, M. R., Fujita, Y., Barozzi, N., Faria, A., Simerska, P., Moyle, P. M., Good, M. F., and Toth, I. (2008) Structure-activity relationship of a series of synthetic lipopeptide self-adjuvanting group A streptococcal vaccine candidates, J. Med. Chem. 51, 167–172.

    Article  PubMed  CAS  Google Scholar 

  11. Olive, C., Hsien, K., Horvath, A., Clair, T., Yarwood, P., Toth, I., and Good, M. F. (2004) Protection against group A streptococcal infection by vaccination with self-adjuvanting lipid core M protein peptides, Vaccine 23, 2298–2303.

    Article  Google Scholar 

  12. Olive, C., Batzloff, M. R., Horvath, A., Wong, A., Clair, T., Yarwood, P., Toth, I., and Good, M. F. (2002) A lipid core peptide construct containing a conserved region determinant of the group a streptococcal M protein elicits heterologous opsonic antibodies, Infect. Immun. 70, 2734–2738.

    Article  PubMed  CAS  Google Scholar 

  13. Horvath, A., Olive, C., Wong, A., Clair, T., Yarwood, P., Good, M., and Toth, I. (2002) A lipophilic adjuvant carrier system for antigenic peptides, Lett. Pept. Sci. 8, 285–288.

    Google Scholar 

  14. Cemazar, M., and Craik, D. J. (2008) Microwave-assisted Boc-solid phase peptide synthesis of cyclic cysteine-rich peptides,J. Pept. Sci. 14, 683–689.

    Article  PubMed  CAS  Google Scholar 

  15. Gibbons, W. A., Hughes, R. A., Charalambous, M., Christodoulou, M., Szeto, A., Aulabaugh, A. E., Mascagni, P., and Toth, I. (1990) Lipidic peptides.1. Synthesis, resolution and structural elucidation of lipidic amino-acids and their homo-oligomers and heterooligomers, Liebigs Ann. Chem., 1175–1183.

    Google Scholar 

  16. Schnolzer, M., Alewood, P., Jones, A., Alewood, D., and Kent, S. B. H. (2007) In situ neutralization in boc-chemistry solid phase peptide synthesis - Rapid, high yield assembly of difficult sequences, Int. J. Pept. Res. Ther. 13, 31–44.

    Article  CAS  Google Scholar 

  17. Schnolzer, M., Alewood, P., Jones, A., Alewood, D., and Kent, S. B. H. (1992) In situ neutralization in boc-chemistry solid phase peptide synthesis - Rapid, high yield assembly of difficult sequences, Int. J. Pept. Protein Res. 40, 180–193.

    Article  PubMed  CAS  Google Scholar 

  18. Sarin, V. K., Kent, S. B. H., Tam, J. P., and Merrifield, R. B. (1981) Quantitative monitoring of solid phase peptide-synthesis by the ninhydrin reaction Anal. Biochem. 117, 147–157.

    CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Health and Medicinal Research Council (Australia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Istvan Toth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Skwarczynski, M., Toth, I. (2011). Lipid-Core-Peptide System for Self-Adjuvanting Synthetic Vaccine Delivery. In: Mark, S. (eds) Bioconjugation Protocols. Methods in Molecular Biology, vol 751. Humana Press. https://doi.org/10.1007/978-1-61779-151-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-151-2_18

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-150-5

  • Online ISBN: 978-1-61779-151-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics