Skip to main content

Heat-Inducible RNAi for Gene Functional Analysis in Plants

  • Protocol
  • First Online:
Book cover RNAi and Plant Gene Function Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 744))

Abstract

Controlling gene expression during plant development is an efficient method to explore gene function and RNA interference (RNAi) is now considered as a powerful technology for gene functional analysis. However, constitutive gene silencing cannot be used with genes involved in fundamental processes such as embryo viability or plant growth and alternative silencing strategies avoiding these limitations should be preferred. Tissue-specific and inducible promoters, able to control gene expression at spatial and/or temporal level, can be used to circumvent viability problems. In this chapter, after a rapid overview of the inducible promoters currently used for transgenic approaches in plants, we describe a method we have developed to study gene function by heat-inducible RNAi. This system is easy to use and complementary to those based on chemical gene inducer treatments and might be useful for both research and biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.

    Google Scholar 

  2. Fox, S., Flichkin, S., and Mockler, T. C. (2009) Applications of ultra-high-throughput sequencing. In: Plant Systems Biology (ed. Belostotsky, D.) Methods in Molecular Biology, Humana Press, Totowa, NJ, Vol. 553, pp. 79–108.

    Google Scholar 

  3. Bourque, J. E. (1995) Antisense strategies for genetic manipulations in plants. Plant Sci. 105, 125–149.

    Article  CAS  Google Scholar 

  4. Chuang, C. F. and Meyerowitz, E. M. (2000) Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 97, 4985–4990.

    Article  PubMed  CAS  Google Scholar 

  5. Tavernarakis, N., Wang, S. L., Dorovkov, M., Ryazanov, A., and Driscoll, A. M. (2000) Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nat. Genet. 24, 180–183.

    Article  PubMed  CAS  Google Scholar 

  6. Sui, G., Soohoo, C., Affar, B., Gay, F., Shi, Y., Forrester, W. C., and Shi, Y. (2002) A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. USA 99, 5515–5520.

    Article  PubMed  CAS  Google Scholar 

  7. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, D. E., and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.

    Article  PubMed  CAS  Google Scholar 

  8. Waterhouse, P. M., Graham, M. W., and Wang, M. B. (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc. Natl. Acad. Sci. USA 95, 13959–13964.

    Article  PubMed  CAS  Google Scholar 

  9. Bernstein, E., Caudy, A. A., Hammond, S. M., and Hannon, G. J. (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366.

    Article  PubMed  CAS  Google Scholar 

  10. Cigan, A. M., Unger-Wallace, E., and Haug-Collet, K. (2005) Transcriptional gene silencing as a tool for uncovering gene function in maize. Plant J. 6, 929–940.

    Article  Google Scholar 

  11. Mansoor, S., Amin, I., Hussain, M., Zafar, Y., and Briddon, R. W. (2006) Engineering novel traits in plants through RNA interference. Trends Plant Sci. 11, 559–565.

    Article  PubMed  CAS  Google Scholar 

  12. Schwab, R., Ossowski, S., Riester, M., Warthmann, N., and Weigel, D. (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18, 1121–1133.

    Article  PubMed  CAS  Google Scholar 

  13. Yang, Y., Costa, A., Leonhardt, N., Siegel, R. S., and Schroeder, J. I. (2008) Isolation of a strong Arabidopsis guard cell promoter and its potential as a research tool. Plant Methods 4, 1–15.

    Article  Google Scholar 

  14. Gatz, C. and Lenk, I. (1998) Promoters that respond to chemical inducers. Trends Plant Sci. 3, 352–358.

    Article  Google Scholar 

  15. Gatz, C., Frohberg, C., and Wendenburg, R. (1992) Stringent repression and homogeneous derepression by tetracycline of a modified CaMV 35S promoter in intact transgenic tobacco plants. Plant J. 2, 397–404.

    PubMed  CAS  Google Scholar 

  16. Mett, V. L., Lochhead, L. P., and Reynolds, P. H. (1993) Copper-controllable gene expression system for whole plants. Proc. Natl. Acad. Sci. USA 90, 4567–4571.

    Article  PubMed  CAS  Google Scholar 

  17. Ait-Ali, T., Rands, C., and Harberd, N. P. (2003) Flexible control of plant architecture and yield via switchable expression of Arabidopsis gai. Plant Biotechnol. J. 1, 337–343.

    Article  PubMed  Google Scholar 

  18. Zuo, J. and Chua, N. H. (2000) Chemical-inducible systems for regulated expression of plant genes. Curr. Opin. Biotechnol. 11, 146–151.

    Article  PubMed  CAS  Google Scholar 

  19. Andersen, S. U., Cvitanich, C., Hougaard, B. K., Roussis, A., Gronlund, M., Jensen, D. B., Frokjaer, L. A., and Jensen, E. O. (2003) The glucocorticoid-inducible GVG system causes severe growth defects in both root and shoot of the model legume Lotus japonicus. Mol. Plant Micr. Interact. 16, 1069–1076.

    Article  CAS  Google Scholar 

  20. Vreugdenhil, D., Claassens, M. M., Verhees, J., van der Krol, A. R., and van der Plas, L. H. (2006) Ethanol-inducible gene expression: non-transformed plants also respond to ethanol. Trends Plant Sci. 11, 9–11.

    Article  PubMed  CAS  Google Scholar 

  21. Takahashi, T. and Komeda, Y. (1989) Characterization of two genes encoding small heat-shock proteins in Arabidopsis thaliana. Mol. Gen. Genet. 219, 365–372.

    Article  PubMed  CAS  Google Scholar 

  22. Takahashi, T., Naito, S., and Komeda, Y. (1992) The Arabidopsis HSP18.2 promoter/GUS gene fusion in transgenic Arabidopsis plants: a powerful tool for the isolation of regulatory mutants of the heat-shock response. Plant J. 2, 751–761.

    Article  CAS  Google Scholar 

  23. Matsuhara, S., Jingu, F., Takahashi, T., and Komeda, Y. (2000) Heat-shock tagging: a simple method for expression and isolation of plant genome DNA flanked by T-DNA insertions. Plant J. 22, 79–86.

    Article  PubMed  CAS  Google Scholar 

  24. Yoshida, K. and Shinmyo, A. (2000) Transgene expression systems in plant, a natural bioreactor. J Biosci. Bioeng. 90, 353–362.

    PubMed  CAS  Google Scholar 

  25. Luo, K., Sun, M., Deng, W., and Xu, S. (2008) Excision of selectable marker gene from transgenic tobacco using the GM-gene-deletor system regulated by a heat-inducible promoter. Biotechnol. Lett. 30, 1295–1302.

    Article  PubMed  CAS  Google Scholar 

  26. Masclaux, F., Charpenteau, M., Takahashi, T., Pont-Lezica, R., and Galaud, J. P. (2004) Gene silencing using a heat-inducible RNAi system in Arabidopsis. Biochem. Biophys. Res. Commun. 321, 364–369.

    Article  PubMed  CAS  Google Scholar 

  27. Guo, H. S., Fei, J. F., Xie, Q., and Chua, N. H. (2003) A chemical-regulated inducible RNAi system in plants. Plant J. 34, 383–392.

    Article  PubMed  CAS  Google Scholar 

  28. Ruiz, M. T., Voinnet, O., and Baulcombe, D. C. (1998) Initiation and maintenance of virus-induced gene silencing. Plant Cell 10, 937–946.

    Article  PubMed  CAS  Google Scholar 

  29. Wesley, S. V., Helliwell, C. A., Smith, N. A., Wang, M. B., Rouse, D. T., Liu, Q., Gooding, P. S., Singh, S. P., Abbott, D., Stoutjesdijk, P. A., Robinson, S. P., Gleave, A. P., Green, A. G., and Waterhouse, P. M. (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J. 27, 581–590.

    Article  PubMed  CAS  Google Scholar 

  30. Hellens, R. P., Edwards, E. A., Leyland, N. R., Bean, S., and Mullineaux, P. M. (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol. Biol. 42, 819–832. http://www.pgreen.ac.uk

    Article  PubMed  CAS  Google Scholar 

  31. Koncz, C. and Schnell, J. (1986) The promoter of TL-DNA gene 5 controls the tissue specific expression of chimeric genes carried by a novel type of Agrobacterium binary vector. Mol. Gen. Genet. 204, 383–396.

    Article  CAS  Google Scholar 

  32. Kulkarni, M. M., Booker, M., Silver, S. J., Friedman, A., Hong, P., Perrimon, N., and Mathey-Prevot, B. (2006) Evidence of off-target effects associated with long dsRNAs in Drosophila melanogaster cell-based assays. Nat. Methods 10, 833–838.

    Google Scholar 

  33. Helliwell, C. and Waterhouse, P. (2003) Constructs and methods for high-throughput gene silencing in plants. Methods 30, 289–295.

    Article  PubMed  CAS  Google Scholar 

  34. Inoue, H., Nojima, H., and Okayama, H. (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96, 23–28.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Phil Mullineaux and Roger Hellens from John Innes Centre and the BBSRC for providing us with pGREEN and pSOUP vectors. We are grateful to Rafaël Pont-Lezica, Séverine Lorrain, and Martine Charpenteau for discussion and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Philippe Galaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Masclaux, F., Galaud, JP. (2011). Heat-Inducible RNAi for Gene Functional Analysis in Plants. In: Kodama, H., Komamine, A. (eds) RNAi and Plant Gene Function Analysis. Methods in Molecular Biology, vol 744. Humana Press. https://doi.org/10.1007/978-1-61779-123-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-123-9_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-122-2

  • Online ISBN: 978-1-61779-123-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics