Skip to main content

Preparation of Platelet Concentrates

  • Protocol
  • First Online:
Serum/Plasma Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 728))

Abstract

Platelets are specialized blood cells that play central roles in physiologic and pathologic processes of hemostasis, wound healing, host defense, thrombosis, inflammation, and tumor metastasis. Activation of platelets is crucial for platelet function that includes a complex interplay of adhesion, signaling molecules, and release of bioactive factors. Transfusion of platelet concentrates is an important treatment component for thrombocytopenia and bleeding. Recent progress in high-throughput mRNA and protein profiling techniques has advanced the understanding of platelet biological functions toward identifying novel platelet-expressed and secreted proteins, analyzing functional changes between normal and pathologic states, and determining the effects of processing and storage on platelet concentrates for transfusion. It is important to understand the different standard methods of platelet preparation and how they differ from the perspective for use as research samples in clinical chemistry. Two simple methods are described here for the preparation of research-scale platelet samples from whole blood, and detailed notes are provided about the methods used for the preparation of platelet concentrates for transfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jurk, K. and B.E. Kehrel (2005), Platelets: physiology and biochemistry. Semin Thromb Hemost. 31(4), 381–92.

    Article  PubMed  CAS  Google Scholar 

  2. George, J.N. (2000), Platelets. Lancet. 355(9214), 1531–9.

    Article  PubMed  CAS  Google Scholar 

  3. Harrison, P. (2005), Platelet function analysis. Blood Rev. 19(2), 111–23.

    Article  PubMed  Google Scholar 

  4. Italiano, J.E., Jr. and R.A. Shivdasani (2003), Megakaryocytes and beyond: the birth of platelets. J Thromb Haemost. 1(6), 1174–82.

    Article  PubMed  CAS  Google Scholar 

  5. McRedmond, J.P., S.D. Park, D.F. Reilly, et al. (2004), Integration of proteomics and genomics in platelets: a profile of platelet proteins and platelet-specific genes. Mol Cell Proteomics. 3(2), 133–44.

    PubMed  CAS  Google Scholar 

  6. Harrison, P. and A.H. Goodall (2008), “Message in the platelet”--more than just vestigial mRNA! Platelets. 19(6), 395–404.

    Article  PubMed  CAS  Google Scholar 

  7. Garcia, A. (2006), Proteome analysis of signaling cascades in human platelets. Blood Cells Mol Dis. 36(2), 152–156.

    Article  PubMed  CAS  Google Scholar 

  8. Gnatenko, D.V., P.L. Perrotta, and W.F. Bahou (2006), Proteomic approaches to dissect platelet function: one-half of the story. Blood. 108(13), 3983–91.

    Article  PubMed  CAS  Google Scholar 

  9. Senzel, L., D.V. Gnatenko, and W.F. Bahou (2009), The platelet proteome. Curr Opin Hematol. 16(5), 329–33.

    Article  PubMed  CAS  Google Scholar 

  10. Greening, D.W., K. Glenister, R. Sparrow, et al., Enrichment of human platelet membrane-cytoskeletal proteins for proteomic analysis, in Proteomic analysis of membrane proteins: Methods and protocols. Methods in Molecular Medicine Series., M. Pierce, Editor. 2009, Humana Press. Vol. 528, 245–258.

    Google Scholar 

  11. Greening, D.W., K.M. Glenister, E.A. Kapp, et al. (2008), Comparison of human platelet-membrane cytoskeletal proteins with the plasma proteome: Towards understanding the platelet-plasma nexus. Proteomics Clin. Appl. 2, 63–77.

    Article  PubMed  CAS  Google Scholar 

  12. Moebius, J., R.P. Zahedi, U.U. Lewandrowski, et al. (2005), The human platelet membrane proteome reveals several new potential membrane proteins. Mol Cell Proteomics. 4(11), 1754–61.

    Article  PubMed  CAS  Google Scholar 

  13. Qureshi, A.H., V. Chaoji, D. Maiguel, et al. (2009), Proteomic and phospho-proteomic profile of human platelets in basal, resting state: insights into integrin signaling. PLoS One. 4(10), e7627.

    Article  PubMed  Google Scholar 

  14. Dittrich, M., I. Birschmann, S. Mietner, et al. (2008), Platelet protein interactions: map, signaling components, and phosphorylation groundstate. Arterioscler Thromb Vasc Biol. 28(7), 1326–31.

    Article  PubMed  CAS  Google Scholar 

  15. Zahedi, R.P., U. Lewandrowski, J. Wiesner, et al. (2008), Phosphoproteome of resting human platelets. J Proteome Res. 7(2), 526–34.

    Article  PubMed  CAS  Google Scholar 

  16. Gevaert, K., M. Goethals, L. Martens, et al. (2003), Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides. Nat Biotechnol. 21(5), 566–9.

    Article  PubMed  CAS  Google Scholar 

  17. Garcia, B.A., D.M. Smalley, H. Cho, et al. (2005), The platelet microparticle proteome. J Proteome Res. 4(5), 1516–1521.

    Article  PubMed  CAS  Google Scholar 

  18. Jin, M., G. Drwal, T. Bourgeois, et al. (2005), Distinct proteome features of plasma microparticles. Proteomics. 5(7), 1940–52.

    Article  PubMed  CAS  Google Scholar 

  19. Janowska-Wieczorek, A., M. Wysoczynski, J. Kijowski, et al. (2005), Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer. 113(5), 752–60.

    Article  PubMed  CAS  Google Scholar 

  20. Thiele, T., L. Steil, S. Gebhard, et al. (2007), Profiling of alterations in platelet proteins during storage of platelet concentrates. Transfusion. 47(7), 1221–33.

    Article  PubMed  CAS  Google Scholar 

  21. Glenister, K.M., K.A. Payne, and R.L. Sparrow (2008), Proteomic analysis of supernatant from pooled buffy-coat platelet concentrates throughout 7-day storage. Transfusion. 48(1), 99–107.

    PubMed  CAS  Google Scholar 

  22. Thon, J.N., P. Schubert, M. Duguay, et al. (2008), Comprehensive proteomic analysis of protein changes during platelet storage requires complementary proteomic approaches. Transfusion. 48(3), 425–35.

    Article  PubMed  CAS  Google Scholar 

  23. Sacristan, D., M. Marques, S. Spinella, et al. (2008), Modifications by Olmesartan medoxomil treatment of the platelet protein profile of moderate hypertensive patients. Proteomics Clin. Appl. 2(9), 1300–1312.

    Google Scholar 

  24. Springer, D.L., J.H. Miller, S.L. Spinelli, et al. (2009), Platelet proteome changes associated with diabetes and during platelet storage for transfusion. J Proteome Res. 8(5), 2261–72.

    Article  PubMed  CAS  Google Scholar 

  25. van Rhenen, D.J., J. Vermeij, J. de Voogt, et al. (1998), Quality and standardization in blood component preparation with an automated blood processing technique. Transfus Med. 8(4), 319–24.

    Article  PubMed  Google Scholar 

  26. Murphy, S. (2005), Platelets from pooled buffy coats: an update. Transfusion. 45(4), 634–9.

    Article  PubMed  Google Scholar 

  27. Murphy, S. and F.H. Gardner (1969), Effect of storage temperature on maintenance of platelet viability--deleterious effect of refrigerated storage. N Engl J Med. 280(20), 1094–8.

    Article  PubMed  CAS  Google Scholar 

  28. Wandall, H.H., K.M. Hoffmeister, A.L. Sorensen, et al. (2008), Galactosylation does not prevent the rapid clearance of long-term, 4 degrees C-stored platelets. Blood. 111(6), 3249–56.

    Article  PubMed  CAS  Google Scholar 

  29. Neufeld, M., U. Nowak-Gottl, and R. Junker (1999), Citrate-theophylline-adenine-dipyridamol buffer is preferable to citrate buffer as an anticoagulant for flow cytometric measurement of platelet activation. Clin Chem. 45(11), 2030–3.

    PubMed  CAS  Google Scholar 

  30. Gulliksson, H. (2007), Platelet additive solutions: current status. Immunohematology. 23(1), 14–9.

    PubMed  CAS  Google Scholar 

  31. van der Meer, P.F. (2007), Platelet additive solutions: a future perspective. Transfus Clin Biol. 14(6), 522–5.

    Article  PubMed  Google Scholar 

  32. Vassallo, R.R. and S. Murphy (2006), A critical comparison of platelet preparation methods. Curr Opin Hematol. 13(5), 323–30.

    Article  PubMed  Google Scholar 

  33. Greening, D.W., K.M. Glenister, R.L. Sparrow, et al. (2010), International blood collection and storage: Clinical use of blood products. J Proteomics. 73(3), 386–395.

    Article  PubMed  CAS  Google Scholar 

  34. Murphy, S. and F.H. Gardner (1975), Platelet storage at 22 degrees C: role of gas transport across plastic containers in maintenance of viability. Blood. 46(2), 209–18.

    PubMed  CAS  Google Scholar 

  35. Holme, S., K. Vaidja, and S. Murphy (1978), Platelet storage at 22 degrees C: effect of type of agitation on morphology, viability, and function in vitro. Blood. 52(2), 425–35.

    PubMed  CAS  Google Scholar 

  36. Snyder, E.L., M. Ezekowitz, R. Aster, et al. (1985), Extended storage of platelets in a new plastic container. II. In vivo response to infusion of platelets stored for 5 days. Transfusion. 25(3), 209–14.

    Google Scholar 

  37. AuBuchon, J.P., H. Taylor, S. Holme, et al. (2005), In vitro and in vivo evaluation of leukoreduced platelets stored for 7 days in CLX containers. Transfusion. 45(8), 1356–61.

    Article  PubMed  Google Scholar 

  38. Cardigan, R., J. Sutherland, M. Garwood, et al. (2008), In vitro function of buffy coat-derived platelet concentrates stored for 9 days in CompoSol, PASII or 100% plasma in three different storage bags. Vox Sang. 94(2), 103–12.

    PubMed  CAS  Google Scholar 

  39. Skripchenko, A., A. Myrup, D. Thompson-Montgomery, et al. (2010), Periods without agitation diminish platelet mitochondrial function during storage. Transfusion. 50(2), 390–9.

    Article  PubMed  CAS  Google Scholar 

  40. Mathai, J. (2009), Problem of bacterial contamination in platelet concentrates. Transfus Apher Sci. 41(2), 139–44.

    Article  PubMed  Google Scholar 

  41. Shrivastava, M. (2009), The platelet storage lesion. Transfus Apher Sci. 41(2), 105–13.

    Article  PubMed  Google Scholar 

  42. Dzik, S. (1993), Leukodepletion blood filters: filter design and mechanisms of leukocyte removal. Transfus Med Rev. 7(2), 65–77.

    Article  PubMed  CAS  Google Scholar 

  43. Blajchman, M.A. (2006), The clinical benefits of the leukoreduction of blood products. J Trauma. 60(6 Suppl), S83–90.

    Article  PubMed  CAS  Google Scholar 

  44. Dodd, R., W. Kurt Roth, P. Ashford, et al. (2009), Transfusion medicine and safety. Biologicals. 37(2), 62–70.

    Article  PubMed  Google Scholar 

  45. Allain, J.P., S.L. Stramer, A.B. Carneiro-Proietti, et al. (2009), Transfusion-transmitted infectious diseases. Biologicals. 37(2), 71–7.

    Article  PubMed  Google Scholar 

  46. Solheim, B.G. (2008), Pathogen reduction of blood components. Transfus Apher Sci. 39(1), 75–82.

    Article  PubMed  Google Scholar 

  47. Picker, S.M., V. Schneider, L. Oustianskaia, et al. (2009), Cell viability during platelet storage in correlation to cellular metabolism after different pathogen reduction technologies. Transfusion. 49(11), 2311–8.

    Article  PubMed  CAS  Google Scholar 

  48. Van der Meer, P.F., J.L. Kerkhoffs, J. Curvers, et al. (2009), In vitro comparison of platelet storage in plasma and in four platelet additive solutions, and the effect of pathogen reduction: a proposal for an in vitro rating system. Vox Sang. 98, 517–24.

    Article  PubMed  Google Scholar 

  49. Moroff, G. and N.L. Luban (1997), The irradiation of blood and blood components to prevent graft-versus-host disease: technical issues and guidelines. Transfus Med Rev. 11(1), 15–26.

    Article  PubMed  CAS  Google Scholar 

  50. Kelley, W.E., B.B. Edelman, C.B. Drachenberg, et al. (2009), Washing platelets in neutral, calcium-free, Ringer’s acetate. Transfusion. 49(9), 1917–23.

    Article  PubMed  Google Scholar 

  51. Balint, B., D. Paunovic, D. Vucetic, et al. (2006), Controlled-rate versus uncontrolled-rate freezing as predictors for platelet cryopreservation efficacy. Transfusion. 46(2), 230–5.

    Article  PubMed  Google Scholar 

  52. Hornsey, V.S., L. McMillan, A. Morrison, et al. (2008), Freezing of buffy coat-derived, leukoreduced platelet concentrates in 6 percent dimethyl sulfoxide. Transfusion. 48(12), 2508–14.

    Article  PubMed  CAS  Google Scholar 

  53. Cardigan, R., C. Turner, and P. Harrison (2005), Current methods of assessing platelet function: relevance to transfusion medicine. Vox Sang. 88(3), 153–63.

    Article  PubMed  CAS  Google Scholar 

  54. Albanyan, A.M., P. Harrison, and M.F. Murphy (2009), Markers of platelet activation and apoptosis during storage of apheresis- and buffy coat-derived platelet concentrates for 7 days. Transfusion. 49(1), 108–17.

    Article  PubMed  Google Scholar 

  55. Tynngard, N. (2009), Preparation, storage and quality control of platelet concentrates. Transfus Apher Sci. 41(2), 97–104.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosemary L. Sparrow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Greening, D.W., Sparrow, R.L., Simpson, R.J. (2011). Preparation of Platelet Concentrates. In: Simpson, R., Greening, D. (eds) Serum/Plasma Proteomics. Methods in Molecular Biology, vol 728. Humana Press. https://doi.org/10.1007/978-1-61779-068-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-068-3_18

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-067-6

  • Online ISBN: 978-1-61779-068-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics