Skip to main content

Reverse Protein Arrays Applied to Host–Pathogen Interaction Studies

  • Protocol
  • First Online:
Protein Microarray for Disease Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 723))

Abstract

Infection of cells and tissues by pathogenic microorganisms often involves severe reprogramming of host cell signaling. Typically, invasive microorganisms manipulate host cellular pathways seeking advantage for replication and survival within the host, or to evade the immune response. Understanding such subversion of the host cell by intracellular pathogens at a molecular level is the key to possible preventive and therapeutic interventions on infectious diseases. Reverse Protein Arrays (RPAs) have been exploited in other fields, especially in molecular oncology. However, this technology has not been applied yet to the study of infectious diseases. Coupling classic in vitro infection techniques used by cellular microbiologists to proteomic approaches such as RPA analysis should provide a wealth of information about how host cell pathways are manipulated by pathogens. The increasing availability of antibodies specific for phosphorylated epitopes in signaling proteins allows monitoring global changes in phosphorylation through the infection process by utilizing RPA analyses. In our lab, we have shown the potential of RPA technology in this field by devising a microarray consisting of lysates from cell cultures infected by Salmonella typhimurium. The protocols used are described here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paweletz CP, Charboneau L, Bichsel VE, Simone NL, Chen T, Gillespie JW et al (2001) Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20:1981–1989

    Article  PubMed  CAS  Google Scholar 

  2. Wulfkuhle JD, Aquino JA, Calvert VS, Fishman DA, Coukos G, Liotta LA et al (2003) Signal pathway profiling of ovarian cancer from human tissuespecimens using reverse-phase protein microarrays. Proteomics 3:2085–2090

    Article  PubMed  CAS  Google Scholar 

  3. Grubb RL, Calvert VS, Wulkuhle JD, Paweletz CP, Linehan WM, Phillips JL et al (2003) Signal pathway profiling of prostate cancer using reverse phase protein arrays. Proteomics 3:2142–2146

    Article  PubMed  CAS  Google Scholar 

  4. Spurrier B, Honkanen P, Holway A, Kumamoto K, Terashima M, Takenoshita S et al (2008) Protein and lysate array technologies in cancer research. Biotechnol Adv 26:361–369

    Article  PubMed  CAS  Google Scholar 

  5. Bhavsar AP, Guttman JA, Finlay BB (2007) Manipulation of host-cell pathways by bacterial pathogens. Nature 449:827–834

    Article  PubMed  CAS  Google Scholar 

  6. Hueck CJ (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62:379–433

    PubMed  CAS  Google Scholar 

  7. Coburn B, Sekirov I, Finlay BB (2007) Type III secretion systems and disease. Clin Microbiol Rev 20:535–549

    Article  PubMed  CAS  Google Scholar 

  8. Galan JE, Wolf-Watz H (2006) Protein delivery into eukaryotic cells by type III secretion machines. Nature 444:567–573

    Article  PubMed  CAS  Google Scholar 

  9. Stavrinides J, McCann HC, Guttman DS (2008) Host-pathogen interplay and the evolution of bacterial effectors. Cell Microbiol 10:285–292

    PubMed  CAS  Google Scholar 

  10. Angot A, Vergunst A, Genin S, Peeters N (2007) Exploitation of eukaryotic ubiquitin signaling pathways by effectors translocated by bacterial type III and type IV secretion systems. PLoS Pathog 3:e3

    Article  PubMed  Google Scholar 

  11. Molero C, Rodríguez-Escudero I, Alemán A, Rotger R, Molina M, Cid VJ (2009) Addressing the effects of Salmonella internalization in host cell signaling on a reverse-phase protein array. Proteomics 9:3652–3665

    Article  PubMed  CAS  Google Scholar 

  12. Galan JE (1999) Interaction of Salmonella with host cells through the centisome 63 type III secretion system. Curr Opin Microbiol 2:46–50

    Article  PubMed  CAS  Google Scholar 

  13. Steele-Mortimer O (2008) Infection of epithelial cells with Salmonella enterica. Methods Mol Biol 431:201–211

    Article  PubMed  CAS  Google Scholar 

  14. Hardt WD, Chen LM, Schuebel KE, Bustelo XR, Galan JE (1998) S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93:815–826

    Article  PubMed  CAS  Google Scholar 

  15. Stender S, Friebel A, Linder S, Rohde M, Mirold S, Hardt WD (2000) Identification of SopE2 from Salmonella typhimurium, a conserved guanine nucleotide exchange factor for Cdc42 of the host cell. Mol Microbiol 36:1206–1221

    Article  PubMed  CAS  Google Scholar 

  16. Zhou D, Chen LM, Hernandez L, Shears SB, Galan JE (2001) A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host cell actin cytoskeleton rearrangements and bacterial internalization. Mol Microbiol 39:248–259

    Article  PubMed  CAS  Google Scholar 

  17. Dukes JD, Lee H, Hagen R, Reaves BJ, Layton AN, Galyov EE et al (2006) The secreted Salmonella dublin phosphoinositide phosphatase, SopB, localizes to PtdIns(3)P-containing endosomes and perturbs normal endosome to lysosome trafficking. Biochem J 395:239–247

    Article  PubMed  CAS  Google Scholar 

  18. Hernandez LD, Hueffer K, Wenk MR, Galan JE (2004) Salmonella modulates vesicular traffic by altering phosphoinositide metabolism. Science 304:1805–1807

    Article  PubMed  CAS  Google Scholar 

  19. Terebiznik MR, Vieira OV, Marcus SL, Slade A, Yip CM, Trimble WS, Meyer T et al (2002) Elimination of host cell PtdIns(4, 5)P(2) by bacterial SigD promotes membrane fission during invasion by Salmonella. Nature Cell Biol 4:766–773

    Article  PubMed  CAS  Google Scholar 

  20. Rodríguez-Escudero I, Rotger R, Cid VJ, Molina M (2006) Inhibition of Cdc42-dependent signaling in Saccharomyces cerevisiae by phosphatase-dead SigD/SopB from Salmonella typhimurium. Microbiology 152:3437–3452

    Article  PubMed  Google Scholar 

  21. Steele-Mortimer O, Knodler LA, Marcus SL, Scheid MP, Goh B, Pfeifer CG et al (2000) Activation of Akt/protein kinase B in epithelial cells by the Salmonella typhimurium effector sigD. J Biol Chem 275:37718–37724

    Article  PubMed  CAS  Google Scholar 

  22. Hoiseth SK, Stocker BA (1981) Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature 291:238–239

    Article  PubMed  CAS  Google Scholar 

  23. Bevington PR, Robinson DK (2002) Data Reduction and Error Analysis for the Physical Sciences. Mc Graw-Hill, New York

    Google Scholar 

  24. Van Oostrum J, Calonder C, Rechsteiner D, Ehrat M, Mestan J, Fabbro D et al (2009) Tracing pathway activities with kinase inhibitors and reverse phase protein arrays. Proteomics Clin Appl 3:412–422

    Article  PubMed  Google Scholar 

  25. Alemán A, Rodríguez-Escudero I, Mallo GV, Cid VJ, Molina M, Rotger R (2005) The amino-terminal non-catalytic region of Salmo-nella typhimurium SigD affects actin organization in yeast and mammalian cells. Cell Microbiol 7:1432–1446

    Article  PubMed  Google Scholar 

  26. Ghatnekar-Nilsson S, Dexlin L, Wingren C, Montelius L, Borrebaeck CAK (2007) Design of atto-vial based recombinant antibody arrays combined with a planar waveguide detection system. Proteomics 7:540–547

    Article  PubMed  CAS  Google Scholar 

  27. Duveneck GL, Abel AP, Bopp MA, Kresbach GM, Ehrat M (2002) Planar waveguides for ultra-high sensitivity of the analysis of nucleic acids. Analytica Chimica Acta 469:49–61

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank C. Molero, I. Rodríguez-Escudero, A. Alemán, R. Rotger, and other members of our lab for their help and support. M. Ehrat, G.M. Kresbach, and J. van Oostrum are acknowledged for their critical comments on the manuscript. This work was possible thanks to Grants BIO2007-67299 from Ministerio Educación y Ciencia and S-SAL-0246-2006 from Comunidad Autónoma de Madrid (Spain) to M. M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Molina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cid, V.J., Kauffmann, E., Molina, M. (2011). Reverse Protein Arrays Applied to Host–Pathogen Interaction Studies. In: Wu, C. (eds) Protein Microarray for Disease Analysis. Methods in Molecular Biology, vol 723. Humana Press. https://doi.org/10.1007/978-1-61779-043-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-043-0_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-042-3

  • Online ISBN: 978-1-61779-043-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics