Skip to main content

Exploring Polyamine Biosynthetic Diversity Through Comparative and Functional Genomics

  • Protocol
  • First Online:
Polyamines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 720))

Abstract

The existence of multiple, alternative pathways for polyamine biosynthesis, and the presence of alternative polyamine structural analogs, is an indication of the physiological importance of polyamines and their long evolutionary history. Polyamine biosynthesis is modular: diamines are synthesized directly or indirectly from amino acids, and triamines are synthesized from diamines by transfer of aminopropyl, carboxyaminopropyl, or aminobutyl groups to the diamine. Diversification of polyamine biosynthesis has depended on gene duplication and functional divergence, on gene fusion, and on horizontal gene transfer. Four examples of polyamine biosynthetic diversification are presented here with a discussion of methodological and conceptual approaches for identification of new pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wallace HM, Fraser AV, Hughes A (2003) A perspective of polyamine metabolism. Biochem J 376:1–14

    Article  PubMed  CAS  Google Scholar 

  2. Bacchi CJ, Yarlett N (2002) Polyamine metabolism as chemotherapeutic target in protozoan parasites. Mini Rev Med Chem 2:553–563

    Article  PubMed  CAS  Google Scholar 

  3. Ivanov IP, Atkins JF, Michael AJ (2010) A profusion of upstream open reading frame mechanisms in polyamine-responsive translational regulation. Nucleic Acids Res 38:353–359

    Article  PubMed  CAS  Google Scholar 

  4. Pegg AE, Michael AJ (2010) Spermine synthase. Cell Mol Life Sci 67:113–121

    Article  PubMed  CAS  Google Scholar 

  5. Illingworth C, Mayer MJ, Elliott K, Hanfrey C, Walton NJ, Michael AJ (2003) The diverse bacterial origins of the Arabidopsis polyamine biosynthetic pathway. FEBS Lett 549:26–30

    Article  PubMed  CAS  Google Scholar 

  6. Adl SM, Simpson AG, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup O, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MF (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451

    Article  PubMed  Google Scholar 

  7. Koonin EV, Wolf YI (2008) Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res 36:6688–6719

    Article  PubMed  CAS  Google Scholar 

  8. Fraser C, Alm EJ, Polz MF, Spratt BG, Hanage WP (2009) The bacterial species challenge: making sense of genetic and ecological diversity. Science 323:741–746

    Article  PubMed  CAS  Google Scholar 

  9. Chattopadhyay MK, Tabor CW, Tabor H (2009) Polyamines are not required for aerobic growth of Escherichia coli: preparation of a strain with deletions in all of the genes for polyamine biosynthesis. J Bacteriol 191:5549–5552

    Article  PubMed  CAS  Google Scholar 

  10. Momany C, Ernst S, Ghosh R, Chang NL, Hackert ML (1995) Crystallographic structure of a PLP-dependent ornithine decarboxylase from Lactobacillus 30a to 3.0 A resolution. J Mol Biol 252:643–655

    Article  PubMed  CAS  Google Scholar 

  11. Bell E, Malmberg RL (1990) Analysis of a cDNA encoding arginine decarboxylase from oat reveals similarity to the Escherichia coli arginine decarboxylase and evidence of protein processing. Mol Gen Genet 224:431–436

    Article  PubMed  CAS  Google Scholar 

  12. Andrell J, Hicks MG, Palmer T, Carpenter EP, Iwata S, Maher MJ (2009) Crystal structure of the acid-induced arginine decarboxylase from Escherichia coli: reversible decamer assembly controls enzyme activity. Biochemistry 48:3915–3927

    Article  PubMed  CAS  Google Scholar 

  13. Kashiwagi K, Watanabe R, Igarashi K (1994) Involvement of ribonuclease III in the enhancement of expression of the speF-potE operon encoding inducible ornithine decarboxylase and polyamine transport protein. Biochem Biophys Res Commun 200:591–597

    Article  PubMed  CAS  Google Scholar 

  14. Igarashi K, Kashiwagi K, Hamasaki H, Miura A, Kakegawa T, Hirose S, Matsuzaki S (1986) Formation of a compensatory polyamine by Escherichia coli polyamine-requiring mutants during growth in the absence of polyamines. J Bacteriol 166:128–134

    PubMed  CAS  Google Scholar 

  15. Nagano T, Kikuchi Y, Kamio Y (2000) High expression of the second lysine decarboxylase gene, ldc, in Escherichia coli WC196 due to the recognition of the stop codon (TAG), at a position which corresponds to the 33th amino acid residue of sigma38, as a serine residue by the amber suppressor, supD. Biosci Biotechnol Biochem 64:2012–2017

    Article  PubMed  CAS  Google Scholar 

  16. Hamana K, Matsuzaki S (1992) Polyamines as a chemotaxonomic marker in bacterial systematics. Crit Rev Microbiol 18:261–283

    Article  PubMed  CAS  Google Scholar 

  17. Lee J, Michael AJ, Martynowski D, Goldsmith EJ, Phillips MA (2007) Phylogenetic diversity and the structural basis of substrate specificity in the beta/alpha-barrel fold basic amino acid decar­boxylases. J Biol Chem 282:27115–27125

    Article  PubMed  CAS  Google Scholar 

  18. Takatsuka Y, Yamaguchi Y, Ono M, Kamio Y (2000) Gene cloning and molecular characterization of lysine decarboxylase from Selenomonas ruminantium delineate its evolutionary relationship to ornithine decarboxylases from eukaryotes. J Bacteriol 182:6732–6741

    Article  PubMed  CAS  Google Scholar 

  19. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  20. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  21. Wilgenbusch JC, Swofford D (2003) Inferring evolutionary trees with PAUP*. Curr Protoc Bioinformatics, Chapter 6, Unit 6 4

    Google Scholar 

  22. Kumar S, Tamura K, Nei M (1994) MEGA: molecular evolutionary genetics analysis software for microcomputers. Comput Appl Biosci 10:189–191

    PubMed  CAS  Google Scholar 

  23. Hall BG (2008) Phylogenetic trees made easy, 3rd edn. Sinauer Associates, Sunderland, MA

    Google Scholar 

  24. Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  25. Lee J, Sperandio V, Frantz DE, Longgood J, Camilli A, Phillips MA, Michael AJ (2009) An Alternative Polyamine Biosynthetic Pathway is Widespread in Bacteria and Essential for Biofilm Formation in Vibrio Cholerae. J Biol Chem 284:9899–9907

    Article  PubMed  CAS  Google Scholar 

  26. Wu H, Min J, Zeng H, McCloskey DE, Ikeguchi Y, Loppnau P, Michael AJ, Pegg AE, Plotnikov AN (2008) Crystal structure of human spermine synthase. J Biol Chem 283:16135–16146

    Article  PubMed  CAS  Google Scholar 

  27. Pegg AE, Michael AJ (2009) Spermine synthase. Cell Mol Life Sci 67:113–121

    Article  PubMed  Google Scholar 

  28. Luo J, Fuell C, Parr A, Hill L, Bailey P, Elliott K, Fairhurst SA, Martin C, Michael AJ (2009) A novel polyamine acyltransferase responsible for the accumulation of spermidine conjugates in Arabidopsis seed. Plant Cell 21:318–333

    Article  PubMed  CAS  Google Scholar 

  29. Zimmermann P, Hirsch-Hofmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    Article  PubMed  CAS  Google Scholar 

  30. Grienenberger E, Besseau S, Geoffroy P, Debayle D, Heintz D, Lapierre C, Polllet B, Heitz T, Legrand M (2009) A BAHD acyltransferase is expressed in the tapetum of Arabidopsis anthers and is involved in the synthesis of hydroxycinnamoyl spermidines. Plant J 58:246–259

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Michael, A.J. (2011). Exploring Polyamine Biosynthetic Diversity Through Comparative and Functional Genomics. In: Pegg, A., Casero, Jr., R. (eds) Polyamines. Methods in Molecular Biology, vol 720. Humana Press. https://doi.org/10.1007/978-1-61779-034-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-034-8_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-033-1

  • Online ISBN: 978-1-61779-034-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics