Skip to main content

Cell Sheet Technology for Tissue Engineering: The Self-Assembly Approach Using Adipose-Derived Stromal Cells

  • Protocol
  • First Online:
Book cover Adipose-Derived Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 702))

Abstract

In the past years, adipose tissue has spurred a wide interest, not only as a source of adult multipotent stem cells but also as a highly eligible tissue for reconstructive surgery procedures. Tissue engineering is one field of regenerative medicine progressing at great strides in part due to its important use of adipose-derived stem/stromal cells (ASCs). The development of diversified technologies combining ASCs with various biomaterials has lead to the reconstruction of numerous types of tissue-engineered substitutes such as bone, cartilage, and adipose tissues from rodent, porcine, or human ASCs. We have recently achieved the reconstruction of connective and adipose tissues composed entirely of cultured human ASCs and their secreted endogenous extracellular matrix components by a methodology known as the self-assembly approach of tissue engineering. The latter is based on the stimulation of ASCs to secrete and assemble matrix components in culture, leading to the production of cell sheets that can be manipulated and further assembled into thicker multilayer tissues. In this chapter, protocols to generate both reconstructed connective and adipocyte-containing tissues using the self-assembly approach are described in detail. The methods include amplification and cell banking of human ASCs, as well as culture protocols for the production of individual stromal and adipose sheets, which are the building blocks for the reconstruction of multilayered human connective and adipose tissues, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caplan, A. I. (1991) Mesenchymal stem cells. J Orthop Res 9, 641–50.

    Article  PubMed  CAS  Google Scholar 

  2. Prockop, D. J. (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276, 71–4.

    Article  PubMed  CAS  Google Scholar 

  3. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., and Marshak, D. R. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–7.

    Article  PubMed  CAS  Google Scholar 

  4. Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., Schwartz, R. E., Keene, C. D., Ortiz-Gonzalez, X. R., Reyes, M., Lenvik, T., Lund, T., Blackstad, M., Du, J., Aldrich, S., Lisberg, A., Low, W. C., Largaespada, D. A., and Verfaillie, C. M. (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41–9.

    Article  PubMed  CAS  Google Scholar 

  5. Toma, J. G., McKenzie, I. A., Bagli, D., and Miller, F. D. (2005) Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells 23, 727–37.

    Article  PubMed  CAS  Google Scholar 

  6. Gingras, M., Champigny, M. F., and Berthod, F. (2007) Differentiation of human adult skin-derived neuronal precursors into mature neurons. J Cell Physiol 210, 498–506.

    Article  PubMed  CAS  Google Scholar 

  7. Wang, H. S., Hung, S. C., Peng, S. T., Huang, C. C., Wei, H. M., Guo, Y. J., Fu, Y. S., Lai, M. C., and Chen, C. C. (2004) Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22, 1330–7.

    Article  PubMed  Google Scholar 

  8. Sarugaser, R., Lickorish, D., Baksh, D., Hosseini, M. M., and Davies, J. E. (2005) Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells 23, 220–9.

    Article  PubMed  Google Scholar 

  9. Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., Benhaim, P., Lorenz, H. P., and Hedrick, M. H. (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7, 211–28.

    Article  PubMed  CAS  Google Scholar 

  10. Laplante, A. F., Germain, L., Auger, F. A., and Moulin, V. (2001) Mechanisms of wound reepithelialization: hints from a tissue-engineered reconstructed skin to long-standing questions. FASEB J 15, 2377–89.

    Article  PubMed  CAS  Google Scholar 

  11. Auger, F. A., Remy-Zolghadri, M., Grenier, G., and Germain, L. (2000) The self-assembly approach for organ reconstruction by tissue engineering. e-Biomed: A J Regen Med 1, 75–86.

    Article  Google Scholar 

  12. Boyce, S. T., Kagan, R. J., Greenhalgh, D. G., Warner, P., Yakuboff, K. P., Palmieri, T., and Warden, G. D. (2006) Cultured skin substitutes reduce requirements for harvesting of skin autograft for closure of excised, full-thickness burns. J Trauma 60, 821–9.

    PubMed  Google Scholar 

  13. Michel, M., L’Heureux, N., Pouliot, R., Xu, W., Auger, F. A., and Germain, L. (1999) Characterization of a new tissue-engineered human skin equivalent with hair. In Vitro Cell Dev Bio 35, 318–26.

    Article  CAS  Google Scholar 

  14. Pouliot, R., Larouche, D., Auger, F. A., Juhasz, J., Xu, W., Li, H., and Germain, L. (2002) Reconstructed human skin produced in vitro and grafted on athymic mice. Transplantation 73, 1751–7.

    Article  PubMed  Google Scholar 

  15. L’Heureux, N., Pâquet, S., Labbé, R., Germain, L., and Auger, F. A. (1998) A completely biological tissue-engineered blood vessel. FASEB Journal 12, 47–56.

    PubMed  Google Scholar 

  16. Larouche, D., Paquet, C., Fradette, J., Carrier, P., Auger, F. A., and Germain, L. (2009) Regeneration of skin and cornea by tissue engineering. Methods Mol Biol 482, 233–56.

    Article  PubMed  CAS  Google Scholar 

  17. Carrier, P., Deschambeault, A., Audet, C., Talbot, M., Gauvin, R., Giasson, C. J., Auger, F. A., Guerin, S. L., and Germain, L. (2009) Impact of cell source on human cornea reconstructed by tissue engineering. Invest Ophthalmol Vis Sci 50, 2645–52.

    Article  PubMed  Google Scholar 

  18. Magnan, M., Levesque, P., Gauvin, R., Dube, J., Barrieras, D., El-Hakim, A., and Bolduc, S. (2009) Tissue engineering of a genitourinary tubular tissue graft resistant to suturing and high internal pressures. Tissue Eng Part A 15, 197–202.

    Article  CAS  Google Scholar 

  19. Vermette, M., Trottier, V., Menard, V., Saint-Pierre, L., Roy, A., and Fradette, J. (2007) Production of a new tissue-engineered adipose substitute from human adipose-derived stromal cells. Biomaterials 28, 2850–60.

    Article  PubMed  CAS  Google Scholar 

  20. Vallee, M., Cote, J. F., and Fradette, J. (2009) Adipose-tissue engineering: taking advantage of the properties of human adipose-derived stem/stromal cells. Pathol Biol (Paris) 57, 309–17.

    Article  CAS  Google Scholar 

  21. Trottier, V., Marceau-Fortier, G., Germain, L., Vincent, C., and Fradette, J. (2008) IFATS collection: Using human adipose-derived stem/stromal cells for the production of new skin substitutes. Stem Cells 26, 2713–23.

    Article  PubMed  Google Scholar 

  22. Miyahara, Y., Nagaya, N., Kataoka, M., Yanagawa, B., Tanaka, K., Hao, H., Ishino, K., Ishida, H., Shimizu, T., Kangawa, K., Sano, S., Okano, T., Kitamura, S., and Mori, H. (2006) Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med 12, 459–65.

    Article  PubMed  CAS  Google Scholar 

  23. Mitani, G., Sato, M., Lee, J. I., Kaneshiro, N., Ishihara, M., Ota, N., Kokubo, M., Sakai, H., Kikuchi, T., and Mochida, J. (2009) The properties of bioengineered chondrocyte sheets for cartilage regeneration. BMC Biotechnol 9, 17.

    Article  PubMed  CAS  Google Scholar 

  24. Shimizu, H., Ohashi, K., Utoh, R., Ise, K., Gotoh, M., Yamato, M., and Okano, T. (2009) Bioengineering of a functional sheet of islet cells for the treatment of diabetes mellitus. Biomaterials 30, 5943–9.

    Article  PubMed  CAS  Google Scholar 

  25. Yang, J., Yamato, M., Shimizu, T., Sekine, H., Ohashi, K., Kanzaki, M., Ohki, T., Nishida, K., and Okano, T. (2007) Reconstruction of functional tissues with cell sheet engineering. Biomaterials 28, 5033–43.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank current and former members of the LOEX laboratory. A special thank you to Danielle Larouche and to the members of the LOETA team, who have contributed to develop these protocols.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Labbé, B., Marceau-Fortier, G., Fradette, J. (2011). Cell Sheet Technology for Tissue Engineering: The Self-Assembly Approach Using Adipose-Derived Stromal Cells. In: Gimble, J., Bunnell, B. (eds) Adipose-Derived Stem Cells. Methods in Molecular Biology, vol 702. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61737-960-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-960-4_31

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-959-8

  • Online ISBN: 978-1-61737-960-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics