Skip to main content

Adipose Stem Cell Differentiation into Smooth Muscle Cells

  • Protocol
  • First Online:
Adipose-Derived Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 702))

Abstract

The differentiation of adipose-derived stem cells (ASCs) into functional smooth muscle cells has received limited investigation. Various methodologies for both in vitro and in vivo differentiation is described. In vitro differentiation is obtained by either chemical or mechanical stimulation, and is determined by expression of smooth muscle cell markers. In vivo differentiation studies include animal models of cardiovascular disease and one study with urinary bladder reconstruction. The ease of obtaining an abundant number of ASCs render this cell population useful for potential vascular therapies that require autologous smooth muscle cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sidawy, A. N. (1997) Peptide growth factors and their role in the proliferative diseases of the vascular system. New York: Futura.

    Google Scholar 

  2. Moses, M. A., Klagsbrun, M., and Shing, Y. (1995) The role of growth factors in vascular cell development and differentiation. Int Rev Cytol 161, 1–48.

    Article  PubMed  CAS  Google Scholar 

  3. Arakawa, E., Hasegawa, K., Yanai, N., Obinata, M., and Matsuda, Y. (2000) A mouse bone marrow stromal cell line, TBR-B, shows inducible expression of smooth muscle-specific genes. FEBS Lett 481, 193–6.

    Article  PubMed  CAS  Google Scholar 

  4. Arakawa, E., Hasegawa, K., Irie, J., Ide, S., Ushiki, J., Yamaguchi, K., Oda, S., and Matsuda, Y. (2003) l-ascorbic acid stimulates expression of smooth muscle-specific markers in smooth muscle cells both in vitro and in vivo. J Cardiovasc Pharmacol 42, 745–51.

    Article  PubMed  CAS  Google Scholar 

  5. Kinner, B., Zaleskas, J. M., and Spector, M. (2002) Regulation of smooth muscle actin expression and contraction in adult human mesenchymal stem cells. Exp Cell Res 278, 72–83.

    Article  PubMed  CAS  Google Scholar 

  6. Wang, D., Park, J. S., Chu, J. S., Krakowski, A., Luo, K., Chen, D. J., and Li, S. (2004) Proteomic profiling of bone marrow mesenchymal stem cells upon transforming growth factor beta1 stimulation. J Biol Chem 279, 43725–34.

    Article  PubMed  CAS  Google Scholar 

  7. Liu, J. Y., Swartz, D. D., Peng, H. F., Gugino, S. F., Russell, J. A., and Andreadis, S. T. (2007) Functional tissue-engineered blood vessels from bone marrow progenitor cells. Cardiovasc Res 75, 618–28.

    Article  PubMed  CAS  Google Scholar 

  8. de Villiers, J. A., Houreld, N., and Abrahamse, H. (2009) Adipose derived stem cells and smooth muscle cells: implications for regenerative medicine. Stem Cell Rev Rep 5, 256–65.

    Article  Google Scholar 

  9. Rodriguez, L. V., Alfonso, Z., Zhang, R., Leung, J., Wu, B., and Ignarro, L. J. (2006) Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells. Proc Natl Acad Sci U S A 103, 12167–72.

    Article  PubMed  CAS  Google Scholar 

  10. Abderrahim-Ferkoune, A., Bezy, O., Astri-Roques, S., Elabd, C., Ailhaud, G., and Amri, E. Z. (2004) Transdifferentiation of preadipose cells into smooth muscle-like cells: role of aortic carboxypeptidase-like protein. Exp Cell Res 293, 219–28.

    Article  PubMed  CAS  Google Scholar 

  11. Kim, Y. M., Jeon, E. S., Kim, M. R., Jho, S. K., Ryu, S. W., and Kim, J. H. (2008) Angiotensin II-induced differentiation of adipose tissue-derived mesenchymal stem cells to smooth muscle-like cells. Int J Biochem Cell Biol 40, 2482–91.

    Article  PubMed  CAS  Google Scholar 

  12. Yang, P., Yin, S., Cui, L., Li, H., Wu, Y., and Liu, W. (2008) Experiment of adipose derived stem cells induced into smooth muscle cells. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 22, 481–86.

    PubMed  Google Scholar 

  13. Chen, R. B., Liu, J. H., Rao, K., Pan, Y. G., Wang, T., Wang, S. G., and Ye, Z. Q. (2009) Differentiation of rat adipose-derived stem cells into smooth-muscle-like cells in vitro. Zhonghua Nan Ke Xue 15, 425–30.

    PubMed  CAS  Google Scholar 

  14. Nincheri, P., Luciani, P., Squecco, R., Donati, C., Bernacchioni, C., Borgognoni, L., Luciani, G., Benvenuti, S., Francini, F., and Bruni, P. (2009) Sphingosine 1-phosphate induces differentiation of adipose tissue-derived mesenchymal stem cells towards smooth muscle cells. Cell Mol Life Sci 66, 1741–54.

    Article  PubMed  CAS  Google Scholar 

  15. Yun, D. H., Song, H. Y., Lee, M. J., Kim, M. R., Kim, M. Y., Lee, J. S., and Kim, J. H. (2009) Thromboxane A(2) modulates migration, proliferation, and differentiation of adipose tissue-derived mesenchymal stem cells. Exp Mol Med 41, 17–24.

    Article  PubMed  CAS  Google Scholar 

  16. Kim, M. R., Jeon, E. S., Kim, Y. M., Lee, J. S., and Kim, J. H. (2009) Thromboxane a(2) induces differentiation of human mesenchymal stem cells to smooth muscle-like cells. Stem Cells 27, 191–9.

    Article  PubMed  CAS  Google Scholar 

  17. Jeon, E. S., Park, W. S., Lee, M. J., Kim, Y. M., Han, J., and Kim, J. H. (2008) A Rho kinase/myocardin-related transcription factor-A-dependent mechanism underlies the sphingosylphosphorylcholine-induced differentiation of mesenchymal stem cells into contractile smooth muscle cells. Circ Res 103, 635–642.

    Article  PubMed  CAS  Google Scholar 

  18. Madonna, R., Geng, Y. J., and De Caterina, R. (2009) Adipose tissue-derived stem cells. Characterization and potential for cardiovascular repair. Arterioscler Thromb Vasc Biol. 29(11), 1723–1729

    Google Scholar 

  19. Traktuev, D. O., Merfeld-Clauss, S., Li, J., Kolonin, M., Arap, W., Pasqualini, R., Johnstone, B. H., and March, K. L. (2008) A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 102, 77–85.

    Article  PubMed  CAS  Google Scholar 

  20. Jack, G. S., Zhang, R., Lee, M., Xu, Y., Wu, B. M., and Rodriguez, L. V. (2009) Urinary bladder smooth muscle engineered from adipose stem cells and a three dimensional synthetic composite. Biomaterials 30, 3259–70.

    Article  PubMed  CAS  Google Scholar 

  21. Lee, A. A., Delhaas, T., Waldman, L. K., MacKenna, D. A., Villarreal, F. J., and McCulloch, A. D. (1996) An equibiaxial strain system for cultured cells. Am J Physiol 271, C1400–8.

    PubMed  CAS  Google Scholar 

  22. Terracio, L., Tingstrom, A., Peters, W. H., 3rd, and Borg, T. K. (1990) A potential role for mechanical stimulation in cardiac development. Ann N Y Acad Sci 588, 48–60.

    Article  PubMed  CAS  Google Scholar 

  23. Vandenburgh, H. H., and Karlisch, P. (1989) Longitudinal growth of skeletal myotubes in vitro in a new horizontal mechanical cell stimulator. In Vitro Cell Dev Biol 25, 607–16.

    Article  PubMed  CAS  Google Scholar 

  24. Davis, M. J., Wu, X., Nurkiewicz, T. R., Kawasaki, J., Davis, G. E., Hill, M. A., and Meininger, G. A. (2001) Integrins and mechanotransduction of the vascular myogenic response. Am J Physiol Heart Circ Physiol 280, H1427–33.

    PubMed  CAS  Google Scholar 

  25. Lee, W. C., Maul, T. M., Vorp, D. A., Rubin, J. P., and Marra, K. G. (2007) Effects of uniaxial cyclic strain on adipose-derived stem cell morphology, proliferation, and differentiation. Biomech Model Mechanobiol 6, 265–73.

    Article  PubMed  Google Scholar 

  26. Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., Benhaim, P., Lorenz, H. P., and Hedrick, M. H. (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7, 211–28.

    Article  PubMed  CAS  Google Scholar 

  27. Zuk, P. A., Zhu, M., Ashjian, P., De Ugarte, D. A., Huang, J. I., Mizuno, H., Alfonso, Z. C., Fraser, J. K., Benhaim, P., and Hedrick, M. H. (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13, 4279–95.

    Article  PubMed  CAS  Google Scholar 

  28. Lee, W. C., Rubin, J. P., and Marra, K. G. (2006) Regulation of alpha-smooth muscle actin protein expression in adipose-derived stem cells Cells Tissues Organs 183, 80–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Marra, K.G., Brayfield, C.A., Rubin, J.P. (2011). Adipose Stem Cell Differentiation into Smooth Muscle Cells. In: Gimble, J., Bunnell, B. (eds) Adipose-Derived Stem Cells. Methods in Molecular Biology, vol 702. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61737-960-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-960-4_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-959-8

  • Online ISBN: 978-1-61737-960-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics