Skip to main content

Animal Models of Eating Disorders

  • Protocol
  • First Online:
Animal Models of Drug Addiction

Part of the book series: Neuromethods ((NM,volume 53))

Abstract

Eating disorders and drug addiction share many common traits. This includes biological and environmental factors that predispose individuals to develop either disorder, an increased risk for anxiety and depression when the disorders are present, and heightened trait levels of impulsivity and compulsion. Animal models of eating disorders are not as well established as those that model drug addiction, but the research in this area is progressing rapidly. In this chapter, we discuss anorexia nervosa, bulimia nervosa, binge eating disorder, and obesity as these encompass the majority of maladaptive eating behaviors in humans. We begin by outlining the important features that characterize each disorder and that should thereby be present in an animal model. An overview of peptide control of feeding is provided to help the reader evaluate the animal models presented. These are based principally on genetic variation and stressful life events. In general, most animal models based on genetic alterations have limited applicability to humans, at least to date. Those based on stressful life events appear more promising in that they more accurately reproduce alterations in feeding and neuroendocrine function that are characteristic of each disorder. The next obvious step in eating disorder research is to combine the two approaches to determine how genetic alterations and stressful events interact to produce maladaptive eating and physiological changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Quadflieg N, Fichter MM (2003) The course and outcome of bulimia nervosa. Eur Child Adolesc Psychiatry 12:99–109

    Google Scholar 

  2. Steinhausen H (2002) The outcome of anorexia nervosa in the 20th century. Am J Psychiatry 159:1284–1293

    PubMed  Google Scholar 

  3. Volkow ND, Wise RA (2005) How can drug addiction help us understand obesity? Nat Neurosci 8:555–560

    PubMed  CAS  Google Scholar 

  4. Wise RA (1982) Common neural basis of brain stimulation reward, drug reward, and food reward. In: Hoebel BG, Novin D (eds) The neural basis of feeding and reward. Haer Institute, Brunswick, ME, pp 445–454

    Google Scholar 

  5. Garfinkel PE (1974) Perception of hunger and satiety in anorexia nervosa. Psychol Med 4:309–315

    PubMed  CAS  Google Scholar 

  6. Ogden CL, Carroll MD, Curtin LR, McDowell MA, Tabak CJ, Flegal KM (2006) Prevalence of overweight and obesity in the United States, 1999–2004. J Am Med Assoc 295:1549–1555

    CAS  Google Scholar 

  7. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. Washington, DC: 1994.

    Google Scholar 

  8. Kaye W (2008) Neurobiology of anorexia and bulimia nervosa. Physiol Behav 94:121–135

    PubMed  CAS  Google Scholar 

  9. Peruzzo B, Pastor FE, Blázquez JL et al (2000) A second look at the barriers of the medial basal hypothalamus. Exp Brain Res 132:10–26

    PubMed  CAS  Google Scholar 

  10. Cone RD (2005) Anatomy and regulation of the central melanocortin system. Nat Neurosci 8:571–578

    PubMed  CAS  Google Scholar 

  11. Ellacott KL, Cone RD (2006) The role of the central melanocortin system in the regulation of food intake and energy homeostasis: Lessons from mouse models. Philos Trans R Soc Lond B Biol Sci 361:1265–1274

    PubMed  CAS  Google Scholar 

  12. Kishi T, Aschkenasi CJ, Lee CE, Mountjoy KG, Saper CB, Elmquist JK (2003) Expression of melanocortin 4 receptor mRNA in the central nervous system of the rat. J Comp Neurol 457:213–235

    PubMed  CAS  Google Scholar 

  13. Chen H, Charlat O, Tartaglia LA et al (1996) Evidence that the diabetes gene encodes the leptin receptor: Identification of a mutation in the leptin receptor gene in db/db mice. Cell 84:491–495

    PubMed  CAS  Google Scholar 

  14. Date Y, Kojima M, Hosoda H et al (2000) Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 141:4255–4261

    PubMed  CAS  Google Scholar 

  15. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402:656–660

    PubMed  CAS  Google Scholar 

  16. Kamegai J, Tamura H, Shimizu T, Ishii S, Sugihara H, Wakabayashi I (2001) Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and agouti-related protein mRNA levels and body weight in rats. Diabetes 50:2438–2443

    PubMed  CAS  Google Scholar 

  17. Wren AM, Small CJ, Abbott CR et al (2001) Ghrelin causes hyperphagia and obesity in rats. Diabetes 50:2540–2547

    PubMed  CAS  Google Scholar 

  18. Shintani M, Ogawa Y, Ebihara K et al (2001) Ghrelin, an endogenous growth hormone secretagogue, is a novel orexigenic peptide that antagonizes leptin action through the activation of hypothalamic neuropeptide Y/Y1 receptor pathway. Diabetes 50:227–232

    PubMed  CAS  Google Scholar 

  19. Bulik CM, Sullivan PF, Wade TD, Kendler KS (2000) Twin studies of eating disorders: A review. Int J Eat Disord 27:1–20

    PubMed  CAS  Google Scholar 

  20. Bulik CM, Sullivan PF, Kendler KS (2003) Genetic and environmental contributions to obesity and binge eating. Int J Eat Disord 33:293–298

    PubMed  Google Scholar 

  21. Rankinen T, Zuberi A, Chagnon YC et al (2006) The human obesity gene map: The 2005 update. Obesity 14:529–644

    PubMed  Google Scholar 

  22. Foch TT, McClearn GE (1980) Genetics, body weight and obesity. In: Stunkard AJ (ed) Obesity. W.B. Saunders, Philadelphia, pp 48–71

    Google Scholar 

  23. Speakman J, Hambly C, Mitchell S, Król E (2007) Animal models of obesity. Obes Rev 8:55–61

    PubMed  Google Scholar 

  24. Barsh GS, Farooqi IS, O’Rahilly S (2000) Genetics of body-weight regulation. Nature 404:644–651

    PubMed  CAS  Google Scholar 

  25. Coleman DL (1978) Obese and diabetes: Two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia 14:141–148

    PubMed  CAS  Google Scholar 

  26. Friedman JM, Leibel RL, Siegel DS, Walsh J, Bahary N (1991) Molecular mapping of the mouse ob mutation. Genomics 11:1054–1062

    PubMed  CAS  Google Scholar 

  27. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    PubMed  CAS  Google Scholar 

  28. Garthwaite TL, Martinson DR, Tseng LF, Hagan TC, Menahan LA (1980) A longitudinal hormonal profile of the genetically obese mouse. Endocrinology 107:671–676

    PubMed  CAS  Google Scholar 

  29. Pelleymounter MA, Cullen MJ, Baker MB et al (1995) Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269:540–543

    PubMed  CAS  Google Scholar 

  30. Halaas JL, Gajiwala KS, Maffei M et al (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269:543–546

    PubMed  CAS  Google Scholar 

  31. Elmquist JK, Elias CF, Saper CB (1999) From lesions to leptin: Hypothalamic control of food intake and body weight. Neuron 22:221–232

    PubMed  CAS  Google Scholar 

  32. Balthasar N, Coppari R, McMinn J et al (2004) Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron 42:983–991

    PubMed  CAS  Google Scholar 

  33. Cohen P, Zhao C, Cai X et al (2001) Selective deletion of leptin receptor in neurons leads to obesity. J Clin Invest 108:1113–1121

    PubMed  CAS  Google Scholar 

  34. Korner J, Chua SC Jr, Williams JA, Leibel RL, Wardlaw SL (1999) Regulation of hypothalamic proopiomelanocortin by leptin in lean and obese rats. Neuroendocrinology 70:377–383

    PubMed  CAS  Google Scholar 

  35. Kristensen P, Judge ME, Thim L et al (1998) Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature 393:72–76

    PubMed  CAS  Google Scholar 

  36. McLaughlin CL, Baile CA (1980) Decreased sensitivity of Zucker obese rats to the putative satiety agent cholecystokinin. Physiol Behav 25:543–548

    PubMed  CAS  Google Scholar 

  37. Merino B, Cano V, Guzmán R, Somoza B, Ruiz-Gayo M (2008) Leptin-mediated hypothalamic pathway of cholecystokinin (CCK-8) to regulate body weight in free-feeding rats. Endocrinology 149:1994–2000

    PubMed  CAS  Google Scholar 

  38. Mizuno TM, Kleopoulos SP, Bergen HT, Roberts JL, Priest CA, Mobbs CV (1998) Hypothalamic pro-opiomelanocortin mRNA is reduced by fasting and [corrected] in ob/ob and db/db mice, but is stimulated by leptin. Diabetes 47:294–297

    PubMed  CAS  Google Scholar 

  39. Qu D, Ludwig DS, Gammeltoft S et al (1996) A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 380:243–247

    PubMed  CAS  Google Scholar 

  40. Wilding JP, Gilbey SG, Bailey CJ et al (1993) Increased neuropeptide-Y messenger ribonucleic acid (mRNA) and decreased neurotensin mRNA in the hypothalamus of the obese (ob/ob) mouse. Endocrinology 132:1939–1944

    PubMed  CAS  Google Scholar 

  41. Farooqi IS, O’Rahilly S (2005) Monogenic obesity in humans. Annu Rev Med 56:443–458

    PubMed  CAS  Google Scholar 

  42. Considine RV, Sinha MK, Heiman ML et al (1996) Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 334:292–295

    PubMed  CAS  Google Scholar 

  43. Caro JF, Kolaczynski JW, Nyce MR et al (1996) Decreased cerebrospinal-fluid/serum leptin ratio in obesity: A possible mechanism for leptin resistance. Lancet 348:159–161

    PubMed  CAS  Google Scholar 

  44. Schwartz MW, Peskind E, Raskind M, Boyko EJ, Porte DJ (1996) Cerebrospinal fluid leptin levels: relationship to plasma levels and to adiposity in humans. Nat Med 2:589–593

    PubMed  CAS  Google Scholar 

  45. Saad MF, Riad-Gabriel MG, Khan A et al (1998) Diurnal and ultradian rhythmicity of plasma leptin: effects of gender and adiposity. J Clin Endocrinol Metab 83:453–459

    PubMed  CAS  Google Scholar 

  46. Wang M, Orci L, Ravazzola M, Unger RH (2005) Fat storage in adipocytes requires inactivation of leptin’s paracrine activity: Implications for treatment of human obesity. Proc Natl Acad Sci USA 102:18011–18016

    PubMed  CAS  Google Scholar 

  47. Vaisse C, Halaas JL, Horvath CM, Darnell JEJ, Stoffel M, Friedman JM (1996) Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice. Nat Genet 14:95–97

    PubMed  CAS  Google Scholar 

  48. El-Haschimi K, Pierroz DD, Hileman SM, Bjorbaek C, Flier JS (2000) Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity. J Clin Invest 105:1827–1832

    PubMed  CAS  Google Scholar 

  49. Yaswen L, Diehl N, Brennan MB, Hochgeschwender U (1999) Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nat Med 5:1066–1070

    PubMed  CAS  Google Scholar 

  50. Krude H, Biebermann H, Luck W, Horn R, Brabant G, Grüters A (1998) Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet 19:155–157

    PubMed  CAS  Google Scholar 

  51. Challis BG, Pritchard LE, Creemers JWM et al (2002) A missense mutation disrupting a dibasic prohormone processing site in pro-opiomelanocortin (POMC) increases susceptibility to early-onset obesity through a novel molecular mechanism. Hum Mol Genet 11:1997–2004

    PubMed  CAS  Google Scholar 

  52. Jackson RS, Creemers JW, Ohagi S et al (1997) Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat Genet 16:303–306

    PubMed  CAS  Google Scholar 

  53. Chen AS, Metzger JM, Trumbauer ME et al (2000) Role of the melanocortin-4 receptor in metabolic rate and food intake in mice. Transgenic Res 9:145–154

    PubMed  CAS  Google Scholar 

  54. Huszar D, Lynch CA, Fairchild-Huntress V et al (1997) Targeted disruption of the ­melanocortin-4 receptor results in obesity in mice. Cell 88:131–141

    PubMed  CAS  Google Scholar 

  55. Butler AA, Marks DL, Fan W, Kuhn CM, Bartolome M, Cone RD (2001) Melanocortin-4 receptor is required for acute homeostatic responses to increased dietary fat. Nat Neurosci 4:605–611

    PubMed  CAS  Google Scholar 

  56. Samama P, Rumennik L, Grippo JF (2003) The melanocortin receptor MCR4 controls fat consumption. Regul Pept 113:85–88

    PubMed  CAS  Google Scholar 

  57. Fan W, Ellacott KL, Halatchev IG, Takahashi K, Yu P, Cone RD (2004) Cholecystokinin-mediated suppression of feeding involves the brainstem melanocortin system. Nat Neurosci 7:335–336

    PubMed  CAS  Google Scholar 

  58. Farooqi IS, Yeo GS, Keogh JM, Aminian S, Jebb SA, Butler G (2000) Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J Clin Invest 106:271–279

    PubMed  CAS  Google Scholar 

  59. Farooqi IS, Keogh JM, Yeo GS et al (2003) Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med 348:1085–1095

    PubMed  CAS  Google Scholar 

  60. Lubrano-Berthelier C, Cavazos M, Dubern B et al (2003) Molecular genetics of human obesity-associated MC4R mutations. Ann N Y Acad Sci 994:49–57

    PubMed  CAS  Google Scholar 

  61. Vaisse C, Clement K, Guy-Grand B, Froguel P (1998) A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat Genet 20:113–114

    PubMed  CAS  Google Scholar 

  62. Vaisse C, Clement K, Durand E, Hercberg S, Guy-Grand B, Froguel P (2000) Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J Clin Invest 106:253–262

    PubMed  CAS  Google Scholar 

  63. Yeo GS, Farooqi IS, Aminian S, Halsall DJ, Stanhope RG, O’Rahilly S (1998) A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat Genet 20:111–112

    PubMed  CAS  Google Scholar 

  64. Chambers JC, Elliott P, Zabaneh D et al (2008) Common genetic variation near MC4R is associated with waist circumference and insulin resistance. Nat Genet 40:716–718

    PubMed  CAS  Google Scholar 

  65. Loos RJF, Lindgren CM, Li S et al (2008) Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet 40:768–775

    PubMed  CAS  Google Scholar 

  66. Qi L, Kraft P, Hunter DJ, Hu FB (2008) The common obesity variant near MC4R gene is associated with higher intakes of total energy and dietary fat, weight change and diabetes risk in women. Hum Mol Genet 17:3502–3508

    PubMed  CAS  Google Scholar 

  67. Ollmann MM, Wilson BD, Yang Y et al (1997) Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278:135–138

    PubMed  CAS  Google Scholar 

  68. Katsuki A, Sumida Y, Gabazza EC et al (2001) Plasma levels of agouti-related protein are increased in obese men. J Clin Endocrinol Metab 86:1921–1924

    PubMed  CAS  Google Scholar 

  69. Hagan MM, Rushing PA, Benoit SC, Woods SC, Seeley RJ (2001) Opioid receptor involvement in the effect of AgRP-(83-132) on food intake and food selection. Am J Physiol 280:R814–R821

    CAS  Google Scholar 

  70. Argyropoulos G, Rankinen T, Neufeld DR et al (2002) A polymorphism in the human agouti-related protein is associated with late-onset obesity. J Clin Endocrinol Metab 87:4198–4202

    PubMed  CAS  Google Scholar 

  71. Mayfield DK, Brown AM, Page GP, Garvey WT, Shriver MD, Argyropoulos G (2001) A role for the agouti-related protein promoter in obesity and type 2 diabetes. Biochem Biophys Res Commun 287:568–573

    PubMed  CAS  Google Scholar 

  72. Gorwood P, Kipman A, Foulon C (2003) The human genetics of anorexia nervosa. Eur J Pharmacol 480:163–170

    PubMed  CAS  Google Scholar 

  73. Klump KL, Gobrogge KL (2005) A review and primer of molecular genetic studies of anorexia nervosa. Int J Eat Disord 37:S43–S48

    PubMed  Google Scholar 

  74. Bergen AW, van den Bree MB, Yeager M et al (2003) Candidate genes for anorexia nervosa in the 1p33-36 linkage region: Serotonin 1D and delta opioid receptor loci exhibit significant association to anorexia nervosa. Mol Psychiatry 8:397–406

    PubMed  CAS  Google Scholar 

  75. Brown KM, Bujac SR, Mann ET, Campbell DA, Stubbins MJ, Blundell JE (2007) Further evidence of association of OPRD1 & HTR1D polymorphisms with susceptibility to anorexia nervosa. Biol Psychiatry 61:367–373

    PubMed  CAS  Google Scholar 

  76. Di Bella DD, Catalano M, Cavallini MC, Riboldi C, Bellodi L (2000) Serotonin transporter linked polymorphic region in anorexia nervosa and bulimia nervosa. Mol Psychiatry 5:233–234

    PubMed  Google Scholar 

  77. Hu X, Giotakis O, Li T, Karwautz A, Treasure J, Collier DA (2003) Association of the 5-HT2c gene with susceptibility and minimum body mass index in anorexia nervosa. Neuroreport 14:781–783

    PubMed  CAS  Google Scholar 

  78. Matsushita S, Suzuki K, Murayama M et al (2004) Serotonin transporter regulatory region polymorphism is associated with anorexia nervosa. Am J Med Genet 128B:114–117

    PubMed  Google Scholar 

  79. Tozzi F, Bulik CM (2003) Candidate genes in eating disorders. Curr Drug Targets CNS Neurol Disord 2:31–39

    PubMed  CAS  Google Scholar 

  80. Jahng JW, Houpt TA, Kim SJ, Joh SJ, Son JH (1998) Neuropeptide Y mRNA and serotonin innervation in the arcuate nucleus of anorexia mutant mice. Brain Res 790:67–73

    PubMed  CAS  Google Scholar 

  81. Son JH, Baker H, Park DH, Joh TH (1994) Drastic and selective hyperinnervation of central serotonergic neurons in a lethal neurodevelopmental mouse mutant, Anorexia (anx). Mol Brain Res 25:129–134

    PubMed  CAS  Google Scholar 

  82. Maltais LJ, Lane PW, Beamer WG (1984) Anorexia, a recessive mutation causing starvation in preweanling mice. J Hered 75:468–472

    PubMed  CAS  Google Scholar 

  83. Johansen JE, Broberger C, Lavebratt C et al (2000) Hypothalamic CART and serum leptin levels are reduced in the anorectic (anx/anx) mouse. Mol Brain Res 84:97–105

    PubMed  CAS  Google Scholar 

  84. Johansen JE, Fetissov S, Fischer H, Arvidsson S, Hökfelt T, Schalling M (2003) Approaches to anorexia in rodents: Focus on the anx/anx mouse. Eur J Pharmacol 480:171–176

    PubMed  CAS  Google Scholar 

  85. Shimada M, Tritos NA, Lowell BB, Flier JS, Maratos-Flier E (1998) Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature 396:670–674

    PubMed  CAS  Google Scholar 

  86. Bale TL, Contarino A, Smith GW et al (2000) Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Nat Genet 24:410–414

    PubMed  CAS  Google Scholar 

  87. Yamada M, Miyakawa T, Duttaroy A et al (2001) Mice lacking the M3 muscarinic acetylcholine receptor are hypophagic and lean. Nature 410:207–212

    PubMed  CAS  Google Scholar 

  88. Szczypka MS, Rainey MA, Kim DS et al (1999) Feeding behavior in dopamine-­deficient mice. Proc Natl Acad Sci USA 96:12138–12143

    PubMed  CAS  Google Scholar 

  89. Bailer UF, Kaye WH (2003) A review of neuropeptide and neuroendocrine dysregulation in anorexia and bulimia nervosa. Curr Drug Targets CNS Neurol Disord 2:53–59

    PubMed  CAS  Google Scholar 

  90. Ramoz N, Versini A, Gorwood P (2007) Eating disorders: An overview of treatment responses and the potential impact of vulnerability genes and endophenotypes. Expert Opin Pharmacother 8:2029–2044

    PubMed  CAS  Google Scholar 

  91. Dardennes RM, Zizzari P, Tolle V et al (2007) Family trios analysis of common polymorphisms in the obestatin/ghrelin, BDNF and AGRP genes in patients with anorexia nervosa: Association with subtype, body-mass index, severity and age of onset. Psychoneuroendocrinology 32:106–113

    PubMed  CAS  Google Scholar 

  92. Ando T, Komaki G, Naruo T et al (2006) Possible role of preproghrelin gene polymorphisms in susceptibility to bulimia nervosa. Am J Med Genet 141B:929–934

    PubMed  CAS  Google Scholar 

  93. Miyasaka K, Hosoya H, Sekime A et al (2006) Association of ghrelin receptor gene polymorphism with bulimia nervosa in a Japanese population. J Neural Transm 113:1279–1285

    PubMed  CAS  Google Scholar 

  94. Monteleone P, Tortorella A, Castaldo E, Di Filippo C, Maj M (2007) The leu72met polymorphism of the ghrelin gene is signficantly associated with binge eating disorder. Psychiatr Genet 17:13–16

    PubMed  Google Scholar 

  95. Cellini E, Nacmias B, Brecelj-Anderluh M et al (2006) Case-control and combined family trios analysis of three polymorphisms in the ghrelin gene in European patients with anorexia and bulimia nervosa. Psychiatr Genet 16:51–52

    PubMed  Google Scholar 

  96. Monteleone P, Tortorella A, Castaldo E, Di Filippo C, Maj M (2006) No association of the Arg51Gln and Leu72Met polymorphisms of the ghrelin gene with anorexia nervosa or bulimia nervosa. Neurosci Lett 398:325–327

    PubMed  CAS  Google Scholar 

  97. De Smet B, Depoortere I, Moechars D et al (2006) Energy homeostasis and gastric emptying in ghrelin knockout mice. J Pharmacol Exp Ther 316:431–439

    PubMed  Google Scholar 

  98. Vink T, Hinney A, Van Elburg AA et al (2001) Association between an agouti-related protein gene polymorphism and anorexia nervosa. Mol Psychiatry 6:325–328

    PubMed  CAS  Google Scholar 

  99. Kas MJH, van Dijk G, Scheurink AJW, Adan RAH (2003) Agouti-related protein prevents self-starvation. Mol Psychiatry 8:235–240

    PubMed  CAS  Google Scholar 

  100. Siegfried Z, Kanyas K, Latzer Y et al (2004) Association study of cannabinoid receptor gene (CNR1) alleles and anorexia nervosa: Differences between restricting and binging/purging subtypes. Am J Med Genet 125B:126–130

    PubMed  CAS  Google Scholar 

  101. Di Marzo V, Goparaju SK, Wang L et al (2001) Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 410:822–825

    PubMed  Google Scholar 

  102. Eastwood H, Brown KM, Markovic D, Pieri LF (2002) Variation in the ESR1 and ESR2 genes and genetic susceptibility to anorexia nervosa. Mol Psychiatry 7:86–89

    PubMed  CAS  Google Scholar 

  103. Nilsson M, Naessén S, Dahlman I, Lindén Hirschberg A, Gustafsson JA, Dahlman-Wright K (2004) Association of estrogen receptor beta gene polymorphisms with bulimic disease in women. Mol Psychiatry 9:28–34

    PubMed  CAS  Google Scholar 

  104. Rosenkranz K, Hinney A, Ziegler A et al (1998) Systematic mutation screening of the estrogen receptor beta gene in probands of different weight extremes: Identification of several genetic variants. J Clin Endocrinol Metab 83:4524–4527

    PubMed  CAS  Google Scholar 

  105. Kjelsås E, Bjornstrom C, Gotestam G (2004) Prevalence of eating disorders in female and male adolescents (14–15 years). Eating Behav 5:13–25

    Google Scholar 

  106. Donohoe TP (1984) Stress-induced anorexia: Implications for anorexia nervosa. Life Sci 34:203–218

    PubMed  CAS  Google Scholar 

  107. Geary N (2001) Estradiol, CCK and satiation. Peptides 22:1251–1263

    PubMed  CAS  Google Scholar 

  108. Adan RAH, Tiesjema B, Hillebrand JJG, la Fleur SE, Kas MJH, de Krom M (2006) The MC4 receptor and control of appetite. Br J Pharmacol 149:815–827

    PubMed  CAS  Google Scholar 

  109. Weide K, Christ N, Moar KM et al (2003) Hyperphagia, not hypometabolism, causes early onset obesity in melanocortin-4 receptor knockout mice. Physiol Genomics 13:47–56

    PubMed  CAS  Google Scholar 

  110. Potoczna N, Branson R, Kral JG et al (2004) Gene variants and binge eating as predictors of comorbidity and outcome of treatment in severe obesity. J Gastrointest Surg 8:971–982

    PubMed  Google Scholar 

  111. Branson R, Potoczna N, Kral JG, Lentes K, Hoehe MR, Horber FF (2003) Binge eating as a major phenotype of melanocortin 4 receptor gene mutations. N Engl J Med 348:1096–1103

    PubMed  CAS  Google Scholar 

  112. Hebebrand J, Geller F, Dempfle A et al (2004) Binge-eating episodes are not characteristic of carriers of melanocortin-4 receptor gene mutations. Mol Psychiatry 9:796–800

    PubMed  CAS  Google Scholar 

  113. Lubrano-Berthelier C, Dubern B, Lacorte JM et al (2006) Melanocortin 4 receptor mutations in a large cohort of severely obese adults: prevalence, functional classification, genotype-phenotype relationship, and lack of association with binge eating. J Clin Endocrinol Metab 91:1811–1818

    PubMed  CAS  Google Scholar 

  114. Erickson JC, Clegg KE, Palmiter RD (1996) Sensitivity to leptin and susceptibility to seizures of mice lacking neuropeptide Y. Nature 381:415–421

    PubMed  CAS  Google Scholar 

  115. Lo Sauro C, Ravaldi C, Cabras PL, Faravelli C, Ricca V (2008) Stress, hypothalamic-­pituitary-adrenal axis and eating disorders. Neuropsychobiology 57:95–115

    PubMed  Google Scholar 

  116. Gluck ME (2006) Stress response and binge eating disorder. Appetite 46:26–30

    PubMed  Google Scholar 

  117. Pyle RL, Mitchell JE, Eckert ED (1981) Bulimia: A report of 34 cases. J Clin Psychiatry 42:60–64

    PubMed  CAS  Google Scholar 

  118. Wolff GE, Crosby RD, Roberts JA, Wittrock DA (2000) Differences in daily stress, mood, coping, and eating behavior in binge eating and nonbinge eating college women. Addict Behav 25:205–216

    PubMed  CAS  Google Scholar 

  119. Dallman MF, Pecoraro N, Akana SF et al (2003) Chronic stress and obesity: A new view of “comfort food”. Proc Natl Acad Sci USA 100:11696–11701

    PubMed  CAS  Google Scholar 

  120. Armario A (2006) The hypothalamic-pituitary-adrenal axis: What can it tell us about stressors? Curr Drug Targets CNS Neurol Disord 5:485–501

    Google Scholar 

  121. Rowland NE, Antelman SM (1976) Stress-induced hyperphagia and obesity in rats: A possible model for understanding human obesity. Science 191:310–311

    PubMed  CAS  Google Scholar 

  122. Stone AA, Brownell KD (1994) The stress-eating paradox: Multiple daily measurements in adult males and females. Psychol Health 9:425–436

    Google Scholar 

  123. Dallman MF, Pecoraro NC, la Fleur SE (2005) Chronic stress and comfort foods: Self-medication and abdominal obesity. Brain Behav Immun 19:275–280

    PubMed  Google Scholar 

  124. Brown AJ, Avena NM, Hoebel BG (2008) A high-fat diet prevents and reverses the development of activity-based anorexia in rats. Int J Eat Disord 41:383–389

    PubMed  Google Scholar 

  125. Reeder DM, Kramer KM (2005) Stress in free-ranging mammals: Integrating physiology, ecology, and natural history. J Mammal 86:225–235

    Google Scholar 

  126. Chen R, Lewis KA, Perrin MH, Vale WW (1993) Expression cloning of a human ­corticotropin-releasing-factor receptor. Proc Natl Acad Sci USA 90:8967–8971

    PubMed  CAS  Google Scholar 

  127. Lundblad JR, Roberts JL (1988) Regulation of proopiomelanocortin gene expression in pituitary. Endocr Rev 9:135–158

    PubMed  CAS  Google Scholar 

  128. Hashimoto K, Makino S, Asaba K, Nishiyama M (2001) Physiological roles of corticotropin-releasing hormone receptor type 2. Endocr J 48:1–9

    PubMed  CAS  Google Scholar 

  129. Heinrichs SC, Richard D (1999) The role of corticotropin-releasing factor and urocortin in the modulation of ingestive behavior. Neuropeptides 33:350–359

    PubMed  CAS  Google Scholar 

  130. Morley JE, Levine AS (1982) Corticotrophin releasing factor, grooming and ingestive behavior. Life Sci 31:1459–1464

    PubMed  CAS  Google Scholar 

  131. Pelleymounter MA, Joppa M, Carmouche M et al (2000) Role of corticotropin-releasing factor (CRF) receptors in the anorexic syndrome induced by CRF. J Pharmacol Exp Ther 293:799–806

    PubMed  CAS  Google Scholar 

  132. Raber J, Chen S, Mucke L, Feng L (1997) Corticotropin-releasing factor and adrenocorticotrophic hormone as potential central mediators of OB effects. J Biol Chem 272:15057–15060

    PubMed  CAS  Google Scholar 

  133. Nishiyama M, Makino S, Asaba K, Hashimoto K (1999) Leptin effects on the expression of type-2 CRH receptor mRNA in the ventromedial hypothalamus in the rat. J Neuroendocrinol 11:307–314

    PubMed  CAS  Google Scholar 

  134. Richard D, Huang Q, Timofeeva E (2000) The corticotropin-releasing hormone system in the regulation of energy balance in obesity. Int J Obes 24:S36–S39

    CAS  Google Scholar 

  135. Cavagnini F, Croci M, Putignano P, Petroni ML, Invitti C (2000) Glucocorticoids and neuroendocrine function. Int J Obes 24:S77–S79

    CAS  Google Scholar 

  136. Morley JE, Levine AS, Gosnell BA, Kneip J, Grace M (1987) Effect of neuropeptide Y on ingestive behaviors in the rat. Am J Physiol 252:R599–R609

    PubMed  CAS  Google Scholar 

  137. Gardner JD, Rothwell NJ, Luheshi GN (1998) Leptin affects food intake via CRF-receptor-mediated pathways. Nat Neurosci 1:103

    PubMed  CAS  Google Scholar 

  138. Uehara Y, Shimizu H, Ohtani K, Sato N, Mori M (1998) Hypothalamic corticotropin-releasing hormone is a mediator of the anorexigenic effect of leptin. Diabetes 47:890–893

    PubMed  CAS  Google Scholar 

  139. Spencer RL, Miller AH, Moday H, Stein M, McEwen BS (1993) Diurnal differences in basal and acute stress levels of type I and type II adrenal steroid receptor activation in neural and immune tissues. Endocrinology 133:1941–1950

    PubMed  CAS  Google Scholar 

  140. Dallman MF, Akana SF, Bhatnagar S, Bell ME, Strack AM (2000) Bottomed out: Metabolic signficance of the circadian trough in glucocorticoid concentrations. Int J Obes 24:S40–S46

    CAS  Google Scholar 

  141. de Kloet ER, Vreugdenhil E, Oitzl MS, Joëls M (1998) Brain corticosteroid receptor balance in health and disease. Endocr Rev 19:269–301

    PubMed  Google Scholar 

  142. Reul JM, de Kloet ER (1985) Two receptor systems for corticosterone in rat brain: Microdistribution and differential occupation. Endocrinology 117:2505–2511

    PubMed  CAS  Google Scholar 

  143. McEwen BS, Stellar E (1993) Stress and the individual. Mechanisms leading to disease. Arch Intern Med 153:2093–2101

    PubMed  CAS  Google Scholar 

  144. Bhatnagar S, Meaney MJ (1995) Hypothalamic-pituitary-adrenal function in chronic intermittently cold-stressed neonatally handled and non handled rats. J Neuroendocrinol 7:97–108

    PubMed  CAS  Google Scholar 

  145. Meaney MJ, Aitken DH, Sharma S, Viau V, Sarrieau A (1989) Postnatal handling increases hippocampal type II glucocorticoid receptors and enhances adrenocortical ­negative-feedback efficacy in the rat. Neuroendocrinology 51:597–604

    Google Scholar 

  146. Björntorp P (2001) Do stress reactions cause abdominal obesity and comorbidities? Obes Rev 2:73–86

    PubMed  Google Scholar 

  147. Devenport L, Knehans A, Sundstrom A, Thomas T (1989) Corticosterone’s dual metabolic actions. Life Sci 45:1389–1396

    PubMed  CAS  Google Scholar 

  148. Devenport L, Torres A (1984) Aldosterone-stimulated feeding and weight gain: interactions with estrogen? Physiol Behav 33:745–749

    PubMed  CAS  Google Scholar 

  149. Devenport LD, Torres A, Murray CG (1983) Effects of aldosterone and deoxycorticosterone on food intake and body weight. Behav Neurosci 97:667–669

    PubMed  CAS  Google Scholar 

  150. Schwartz MW, Strack AM, Dallman MF (1997) Evidence that elevated plasma corticosterone levels are the cause of reduced hypothalamic corticotrophin-releasing hormone gene expression in diabetes. Regul Pept 72:105–112

    PubMed  CAS  Google Scholar 

  151. Strack AM, Sebastian RJ, Schwartz MW, Dallman MF (1995) Glucocorticoids and insulin: reciprocal signals for energy balance. Am J Physiol 268:R142–R149

    PubMed  CAS  Google Scholar 

  152. Tataranni PA, Larson DE, Snitker S, Young JB, Flatt JP, Ravussin E (1996) Effects of glucocorticoids on energy metabolism and food intake in humans. Am J Physiol 271:E317–E325

    PubMed  CAS  Google Scholar 

  153. Tempel DL, Leibowitz SF (1993) Glucocorticoid receptors in PVN: Interactions with NE, NPY, and Gal in relation to feeding. Am J Physiol 265:E794–E800

    PubMed  CAS  Google Scholar 

  154. Zakrzewska KE, Cusin I, Stricker-Krongrad A et al (1999) Induction of obesity and hyperleptinemia by central glucocorticoid infusion in the rat. Diabetes 48:365–370

    PubMed  CAS  Google Scholar 

  155. Sainsbury A, Cusin I, Rohner-Jeanrenaud F, Jeanrenaud B (1997) Adrenalectomy prevents the obesity syndrome produced by chronic central neuropeptide Y infusion in normal rats. Diabetes 46:209–214

    PubMed  CAS  Google Scholar 

  156. Dagogo-Jack S, Selke G, Melson AK, Newcomer JW (1997) Robust leptin secretory responses to dexamethasone in obese subjects. J Clin Endocrinol Metab 82:3230–3233

    PubMed  CAS  Google Scholar 

  157. Larsson H, Ahrén B (1996) Short-term ­dexamethasone treatment increases plasma leptin independently of changes in insulin sensitivity in healthy women. J Clin Endocrinol Metab 81:4428–4432

    PubMed  CAS  Google Scholar 

  158. Spinedi E, Gaillard RC (1998) A regulatory loop between the hypothalamo-pituitary-adrenal (HPA) axis and circulating leptin: A physiological role of ACTH. Endocrinology 139:4016–4020

    PubMed  CAS  Google Scholar 

  159. Bornstein SR, Uhlmann K, Haidan A, Ehrhart-Bornstein M, Scherbaum WA (1997) Evidence for a novel peripheral action of ­leptin as a metabolic signal to the adrenal gland: Leptin inhibits cortisol release directly. Diabetes 46:1235–1238

    PubMed  CAS  Google Scholar 

  160. Pralong FP, Roduit R, Waeber G et al (1998) Leptin inhibits directly glucocorticoid secretion by normal human and rat adrenal gland. Endocrinology 139:4264–4268

    PubMed  CAS  Google Scholar 

  161. Zakrzewska KE, Cusin I, Sainsbury A, Rohner-Jeanrenaud F, Jeanrenaud B (1997) Glucocorticoids as counterregulatory hormones of leptin: Toward an understanding of leptin resistance. Diabetes 46:717–719

    PubMed  CAS  Google Scholar 

  162. Makimura H, Mizuno TM, Roberts J, Silverstein J, Beasley J, Mobbs CV (2000) Adrenalectomy reverses obese phenotype and restores hypothalamic melanocortin tone in leptin-deficient ob/ob mice. Diabetes 49:1917–1923

    PubMed  CAS  Google Scholar 

  163. Shimomura Y, Bray GA, Lee M (1987) Adrenalectomy and steroid treatment in obese (ob/ob) and diabetic (db/db) mice. Horm Metab Res 19:295–299

    PubMed  CAS  Google Scholar 

  164. Akana SF, Strack AM, Hanson ES et al (1999) Interactions among chronic cold, corticosterone and puberty on energy intake and deposition. Stress 3:131–146

    PubMed  CAS  Google Scholar 

  165. Makino S, Nishiyama M, Asaba K, Gold PW, Hashimoto K (1998) Altered expression of type 2 CRH receptor mRNA in the VMH by glucocorticoids and starvation. Am J Physiol 275:R1138–R1145

    PubMed  CAS  Google Scholar 

  166. Strack AM, Horsley CJ, Sebastian RJ, Akana SF, Dallman MF (1995) Glucocorticoids and insulin: complex interaction on brown adipose tissue. Am J Physiol 268:R1209–R1216

    PubMed  CAS  Google Scholar 

  167. Pasquali R, Vicennati V (2000) Activity of the hypothalamic-pituitary-adrenal axis in different obesity phenotypes. Int J Obes 24:S47–S49

    CAS  Google Scholar 

  168. Zamboni M, Armellini F, Turcato E et al (1997) Body fat distribution before and after weight gain in anorexia nervosa. Int J Eat Disord 21:33–36

    CAS  Google Scholar 

  169. Strongman KT (1965) The effect of anxiety on food intake in the rat. Q J Exp Psychol 17:255–260

    PubMed  CAS  Google Scholar 

  170. Levine AS, Morley JE (1981) Stress-induced eating in rats. Am J Physiol 241:R72–R76

    PubMed  CAS  Google Scholar 

  171. Rasbury W, Shemberg K (1971) The effects of aversive levels of white noise on consummatory behavior. Psychon Sci 22:166–167

    Google Scholar 

  172. Badiani A, Jakob A, Rodaros D, Stewart J (1996) Sensitization of stress-induced feeding in rats repeatedly exposed to brief restraint: The role of corticosterone. Brain Res 710:35–44

    PubMed  CAS  Google Scholar 

  173. Zelena D, Haller J, Halász J, Makara GB (1999) Social stress of variable intensity: physiological and behavioral consequences. Brain Res Bull 48:297–302

    PubMed  CAS  Google Scholar 

  174. Booth DA, Campbell CS (1975) Relation of fatty acids to feeding behaviour: Effects of palmitic acid infusions, lighting variation and pent-4-enoate, insulin or propranolol injection. Physiol Behav 15:523–535

    Google Scholar 

  175. Lett BT, Grant VL, Gaborko LL (1996) A small amount of wheel running facilitates eating in nondeprived rats. Behav Neurosci 110:1492–1495

    PubMed  CAS  Google Scholar 

  176. Kuriyama H, Shibasaki T (2004) Sexual differentiation of the effects of emotional stress on food intake in rats. Neuroscience 124:459–465

    PubMed  CAS  Google Scholar 

  177. Alario P, Gamallo A, Beato MJ, Trancho G (1987) Body weight gain, food intake and adrenal development in chronic noise stressed rats. Physiol Behav 40:29–32

    PubMed  CAS  Google Scholar 

  178. Harris RBS, Palmondon J, Leshin S, Flatt WP, Richard D (2006) Chronic disruption of body weight but not of stress peptides or receptors in rats exposed to repeated restraint stress. Horm Behav 49:615–625

    PubMed  CAS  Google Scholar 

  179. Shimizu N, Oomura Y, Kai Y (1989) Stress-induced anorexia in rats mediated by serotonergic mechanisms in the hypothalamus. Physiol Behav 46:835–841

    PubMed  CAS  Google Scholar 

  180. van Leeuwen SD, Boone OB, Avraham Y, Berry EM (1997) Separation as a new animal model for self-induced weight loss. Physiol Behav 62:77–81

    PubMed  Google Scholar 

  181. O’Connor R, Eikelboom R (2000) The effects of changes in housing on feeding and wheel running. Physiol Behav 68:361–371

    PubMed  Google Scholar 

  182. Paré WP, Houser VP (1973) Activity and food-restriction effects on gastric glandular lesions in the rat: The activity-stress ulcer. Bull Psychonom Soc 2:213–214

    Google Scholar 

  183. Epling WF, Pierce WD (1996) Activity anorexia: theory, research, and treatment. Lawrence Erlbaum, Mahwah, NJ

    Google Scholar 

  184. Routtenberg A, Kuznesof AW (1967) Self-starvation of rats living in activity wheels on a restricted feeding schedule. J Comp Physiol Psychol 64:414–421

    PubMed  CAS  Google Scholar 

  185. Bi S, Scott KA, Hyun J, Ladenheim EE, Moran TH (2005) Running wheel activity prevents hyperphagia and obesity in Otsuka Long-Evans Tokushima fatty rats: Role of hypothalamic signaling. Endocrinology 146:1676–1685

    PubMed  CAS  Google Scholar 

  186. Burden VR, White BD, Dean RG, Martin RJ (1993) Activity of the hypothalamic-­pituitary-adrenal axis is elevated in rats with activity-based anorexia. J Nutr 123:1217–1225

    PubMed  CAS  Google Scholar 

  187. Droste SK, Chandramohan Y, Hill LE, Linthorst AC, Reul JM (2007) Voluntary exercise impacts on the rat hypothalamic-pituitary-adrenocortical axis mainly at the adrenal level. Neuroendocrinology 86:26–37

    PubMed  CAS  Google Scholar 

  188. Elias AN, Wilson AF, Pandian MR et al (1991) Corticotropin releasing hormone and gonadotropin-secretion in physically active males after acute exercise. Eur J Appl Physiol Occup Physiol 62:171–174

    PubMed  CAS  Google Scholar 

  189. Farrell PA, Garthwaite TL, Gustafson AB (1983) Plasma adrenocorticotropin and cortisol responses to submaximal and exhaustive exercise. J Appl Physiol 55:1441–1444

    PubMed  CAS  Google Scholar 

  190. Fediuc S, Campbell JE, Riddell MC (2006) Effect of voluntary wheel running on circadian corticosterone release and on HPA axis responsiveness to restraint stress in Sprague-Dawley rats. J Appl Physiol 100:1867–1875

    PubMed  CAS  Google Scholar 

  191. Girard I, Garland T (2002) Plasma corticosterone response to acute and chronic voluntary exercise in female house mice. J Appl Physiol 92:1553–1561

    PubMed  CAS  Google Scholar 

  192. Levin BE, Dunn-Meynell AA (2004) Chronic exercise lowers the defended body weight gain and adiposity in diet-induced obese rats. Am J Physiol 286:R771–R778

    CAS  Google Scholar 

  193. Wong ML, Licinio J, Gold PW, Glowa J (1993) Activity-induced anorexia in rats does not affect hypothalamic neuropeptide gene-expression chronically. Int J Eat Disord 13:399–405

    PubMed  CAS  Google Scholar 

  194. Broocks A, Schweiger U, Pirke KM (1990) Hyperactivity aggravates semistarvation-induced changes in corticosterone and triiodothyronine concentrations in plasma but not luteinizing hormone and testosterone levels. Physiol Behav 48:567–569

    PubMed  CAS  Google Scholar 

  195. Duclos M, Bouchet M, Vettier A, Richard D (2005) Genetic differences in hypothalamic-pituitary-adrenal axis activity and food restriction-induced hyperactivity in three inbred strains of rats. J Neuroendocrinol 17:740–752

    PubMed  CAS  Google Scholar 

  196. Glavin GB, Paré WP (1985) Early weaning predisposes rats to exacerbated activity-stress ulcer formation. Physiol Behav 34:907–909

    PubMed  CAS  Google Scholar 

  197. Hancock SD, Grant VL (2009) Early maternal separation increases symptoms of activity-based anorexia in male and female rats. J Exp Psychol Anim Behav Process 35:394–406

    PubMed  Google Scholar 

  198. Connan F, Campbell IC, Katzman M, Lightman SL, Treasure J (2003) A neuro­developmental model for anorexia nervosa. Physiol Behav 79:13–24

    PubMed  CAS  Google Scholar 

  199. Kron L, Katz JL, Gorzynski G, Weiner H (1978) Hyperactivity in anorexia nervosa: A fundamental clinical feature. Compr Psychiatry 19:433–440

    PubMed  CAS  Google Scholar 

  200. Routtenberg A (1968) “Self-starvation” of rats living in activity wheels: Adaptation effects. J Comp Physiol Psychol 66:234–238

    PubMed  CAS  Google Scholar 

  201. Paré WP (1975) The influence of food consumption and running activity on the activity-stress ulcer in the rat. Am J Dig Dis 20:262–273

    PubMed  Google Scholar 

  202. Paré WP, Vincent GP, Isom KE, Reeves JM (1978) Sex differences and incidence of activity-stress ulcers in the rat. Psychol Rep 43:591–594

    PubMed  Google Scholar 

  203. Holtkamp K, Herpertz-Dahlmann B, Hebebrand K, Mika C, Kratzsch J, Hebebrand J (2006) Physical activity and restlessness correlate with leptin levels in patients with adolescent anorexia nervosa. Biol Psychiatry 60:311–313

    PubMed  CAS  Google Scholar 

  204. Baranowska B, Baranowska-Bik A, Bik W, Martynska L (2008) The role of leptin and orexins in the dysfunction of hypothalamo-pituitary-gonadal regulation and in the mechanism of hyperactivity in patients with anorexia nervosa. Neuroendocrinol Lett 29:37–40

    PubMed  CAS  Google Scholar 

  205. Pirke KM, Broocks A, Wilckens T, Marquard R, Schweiger U (1993) Starvation-induced hyperactivity in the rat: The role of endocrine and neurotransmitter changes. Neurosci Biobehav Rev 17:287–294

    PubMed  CAS  Google Scholar 

  206. Exner C, Hebebrand J, Remschmidt H et al (2000) Leptin suppresses semi-starvation induced hyperactivity in rats: Implications for anorexia nervosa. Mol Psychiatry 5:476–481

    PubMed  CAS  Google Scholar 

  207. Avraham Y, Hao S, Mendelson S, Berry EM (2001) Tyrosine improves appetite, cognition, and exercise tolerance in activity anorexia. Med Sci Sports Exerc 33:2104–2110

    PubMed  CAS  Google Scholar 

  208. Jones MT, Hillhouse EW, Burden J (1976) Effect of various putative neurotransmitters on the secretion of corticotrophin-releasing hormone from the rat hypothalamus in vitro - a model of the neurotransmitter involved. J Endocrinol 69:1–10

    PubMed  CAS  Google Scholar 

  209. Casper RC (1998) Behavioral activation and lack of concern, core symptoms of anorexia nervosa? Int J Eat Disord 24:381–393

    PubMed  CAS  Google Scholar 

  210. Chui HT, Christensen BK, Zipursky RB et al (2008) Cognitive function and brain structure in females with a history of adolescent-onset anorexia nervosa. Pediatrics 122:e426–e437

    PubMed  Google Scholar 

  211. Garfinkel PE, Kaplan AS (1986) Psycho­neuroendocrine profiles. In: Ferrari E, Brambilla F (eds) Disorders of eating behavior: a psychoneuroendocrine approach. Pergamon, Oxford, pp 1–8

    Google Scholar 

  212. Steinglass JE, Walsh BT, Stern Y (2006) Set shifting deficit in anorexia nervosa. J Int Neuropsychol Soc 12:431–435

    PubMed  Google Scholar 

  213. Avraham Y, Bonne O, Berry EM (1996) Behavioral and neurochemical alterations caused by diet restriction–the effect of tyrosine administration in mice. Brain Res 732:133–144

    PubMed  CAS  Google Scholar 

  214. Eilam D, Zor R, Szechtman H, Hermesh H (2006) Rituals, stereotypy and compulsive behavior in animals and humans. Neurosci Biobehav Rev 30:456–471

    PubMed  Google Scholar 

  215. Robbins TW (1998) Homology in behavioural pharmacology: An approach to animal models of human cognition. Behav Pharmacol 9:509–519

    PubMed  CAS  Google Scholar 

  216. Oliver G, Wardle J (1999) Perceived effects of stress on food choice. Physiol Behav 66:511–515

    PubMed  CAS  Google Scholar 

  217. Dallman MF, Akana SF, Laugero KD et al (2003) A spoonful of sugar: Feedback signals of energy stores and corticosterone regulate responses to chronic stress. Physiol Behav 79:3–12

    PubMed  CAS  Google Scholar 

  218. Kreek MJ, Koob GF (1998) Drug dependence: Stress and dysregulation of brain reward pathways. Drug Alcohol Depend 51:23–47

    PubMed  CAS  Google Scholar 

  219. Yeomans MR, Gray RW (2002) Opioid peptides and the control of human ingestive behaviour. Neurosci Biobehav Rev 26:713–728

    PubMed  CAS  Google Scholar 

  220. Anderson DA, Shapiro JR, Lundgren JD, Spataro LE, Frye CA (2002) Self-reported dietary restraint is associated with elevated levels of salivary cortisol. Appetite 38:13–17

    PubMed  Google Scholar 

  221. McLean JA, Barr SI, Prior JC (2001) Cognitive dietary restraint is associated with higher urinary cortisol excretion in healthy premenopausal women. Am J Clin Nutr 73:7–12

    PubMed  CAS  Google Scholar 

  222. Rideout CA, Linden W, Barr SI (2006) High cognitive dietary restraint is associated with increased cortisol excretion in postmenopausal women. J Gerontol A Biol Sci Med Sci 61A:628–633

    Google Scholar 

  223. Rutters F, Nieuwenhuizen AG, Lemmens SGT, Born JM, Westerterp-Plantenga MS (2009) Hyperactivity of the HPA axis is related to dietary restraint in normal weight women. Physiol Behav 96:315–319

    PubMed  CAS  Google Scholar 

  224. Epel E, Lapidus R, McEwen B, Brownell K (2001) Stress may add bite to appetite in women: A laboratory study of stress-induced cortisol and eating behavior. Psychoneuro­endocrinology 26:37–49

    PubMed  CAS  Google Scholar 

  225. Newman E, O’Connor DB, Conner M (2007) Daily hassles and eating behaviour: The role of cortisol reactivity status. Psychoneuroendocrinology 32:125–132

    PubMed  CAS  Google Scholar 

  226. Markus R, Panhuysen G, Tuiten A, Koppeschaar H (2000) Effects of food on cortisol and mood in vulnerable subjects under controllable and uncontrollable stress. Physiol Behav 70:333–342

    PubMed  CAS  Google Scholar 

  227. Dubé L, LeBel JL, Lu J (2005) Affect asymmetry and comfort food consumption. Physiol Behav 86:559–567

    PubMed  Google Scholar 

  228. Bell ME, Bhargava A, Soriano L, Laugero K, Akana SF, Dallman MF (2002) Sucrose intake and corticosterone interact with cold to modulate ingestive behaviour, energy balance, autonomic outflow and neuroendocrine responses during chronic stress. J Neuroendocrinol 14:330–342

    PubMed  CAS  Google Scholar 

  229. Kinzig KP, Hargrave SL, Honors MA (2008) Binge-type eating attenuates corticosterone and hypophagic responses to restraint stress. Physiol Behav 95:108–113

    PubMed  CAS  Google Scholar 

  230. la Fleur SE, Houshyar H, Roy M, Dallman MF (2005) Choice of lard, but not total lard calories, damps adrenocorticotropin responses to restraint. Endocrinology 146:2193–2199

    PubMed  Google Scholar 

  231. Pecoraro N, Reyes F, Gomez F, Bhargava A, Dallman MF (2004) Chronic stress promotes palatable feeding, which reduces signs of stress: Feedforward and feedback effects of chronic stress. Endocrinology 145:3754–3762

    PubMed  CAS  Google Scholar 

  232. Ulrich-Lai YM, Ostrander MM, Thomas IM et al (2007) Daily limited access to sweetened drink attenuates hypothalamic-pituitary-adrenocortical axis stress responses. Endocrinology 148:1823–1834

    PubMed  CAS  Google Scholar 

  233. Kamara K, Eskay R, Castonguay T (1998) High-fat diets and stress responsivity. Physiol Behav 64:1–6

    PubMed  CAS  Google Scholar 

  234. Legendre A, Harris RBS (2006) Exaggerated response to mild stress in rats fed high-fat diet. Am J Physiol 291:R1288–R1294

    CAS  Google Scholar 

  235. Tannenbaum BM, Brindley DN, Tannenbaum GS, Dallman MF, McArthur MD, Meaney MJ (1997) High-fat feeding alters both basal and stress-induced hypothalamic-pituitary-adrenal activity in the rat. Am J Physiol 273:E1168–E1177

    PubMed  CAS  Google Scholar 

  236. Marcus MD, Kalarchian MA (2003) Binge eating disorder in children and adolescents. Int J Eat Disord 34:S47–S57

    PubMed  Google Scholar 

  237. Kales EF (1990) Macronutrient analysis of binge eating in bulimia. Physiol Behav 48:837–840

    PubMed  CAS  Google Scholar 

  238. Corwin RL, Wojnicki FH, Fisher JO, Dimitriou SG, Rice HB, Young MA (1998) Limited access to a dietary fat option affects ingestive behavior but not body composition in male rats. Physiol Behav 65:545–553

    PubMed  CAS  Google Scholar 

  239. Dimitriou SG, Rice HB, Corwin RL (2000) Effects of limited access to a fat option on food intake and body composition in female rats. Int J Eat Disord 28:436–445

    PubMed  CAS  Google Scholar 

  240. Cottone P, Sabino V, Steardo L, Zorrilla EP (2008) Opioid-dependent anticipatory negative contrast and binge-like eating in rats with limited access to highly preferred food. Neuropsychopharmacology 33:524–535

    PubMed  CAS  Google Scholar 

  241. de Araujo-Held M, Martin ML, de Sousa Almeida S, Luscher B, Corwin RL (2002) Anxiety-related behavior in mice is affected by “bingeing”: Possible involvement of GABA-A receptors. FASEB J 16:A283

    Google Scholar 

  242. Cattanach L, Malley R, Rodin J (1988) Psychologic and physiologic reactivity to stressors in eating disordered individuals. Psychosom Med 50:591–599

    PubMed  CAS  Google Scholar 

  243. Polivy J (1996) Psychological consequences of food restriction. J Am Diet Assoc 96:589–592

    PubMed  CAS  Google Scholar 

  244. Hagan MM, Moss DE (1997) Persistence of binge-eating patterns after a history of restriction with intermittent bouts of refeeding on palatable food in rats: Implications for bulimia nervosa. Int J Eat Disord 22:411–420

    PubMed  CAS  Google Scholar 

  245. Hagan MM, Wauford PK, Chandler PC, Jarrett LA, Rybak RJ, Blackburn K (2002) A new animal model of binge eating: Key synergistic role of past caloric restriction and stress. Physiol Behav 77:45–54

    PubMed  CAS  Google Scholar 

  246. Hancock SD, Menard JL, Olmstead MC (2005) Variations in maternal care influence vulnerability to stress-induced binge eating in female rats. Physiol Behav 85:430–439

    PubMed  CAS  Google Scholar 

  247. Liu D, Diorio J, Tannenbaum B et al (1997) Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science 277:1659–1662

    PubMed  CAS  Google Scholar 

  248. Artiga AL, Viana JB, Maldonado CR, Chandler-Laney PC, Oswald KD, Boggiano MM (2007) Body composition and ­endocrine status of long-term stress-induced binge-­eating rats. Physiol Behav 91:424–431

    PubMed  CAS  Google Scholar 

  249. Avena NM (2007) Examining the addictive-like properties of binge eating using an animal model of sugar dependence. Exp Clin Psychopharmacol 15:481–491

    PubMed  Google Scholar 

  250. Boggiano MM, Chandler PC, Viana JB, Oswald KD, Maldonado CR, Wauford PK (2005) Combined dieting and stress evoke exaggerated responses to opioids in binge-eating rats. Behav Neurosci 119:1207–1214

    PubMed  CAS  Google Scholar 

  251. Brady LS, Smith MA, Gold PW, Herkenham M (1990) Altered expression of hypothalamic neuropeptide mRNAs in food-restricted and food-deprived rats. Neuroendocrinology 52:441–447

    PubMed  CAS  Google Scholar 

  252. Chandler-Laney PC, Castaneda E, Pritchett CE et al (2007) A history of caloric restriction induces neurochemical and behavioral changes in rats consistent with models of depression. Pharmacol Biochem Behav 87:104–114

    PubMed  CAS  Google Scholar 

  253. Chandler-Laney PC, Castaneda E, Viana JB, Oswald KD, Maldonado CR, Boggiano MM (2007) A history of human-like dieting alters serotonergic control of feeding and neurochemical balance in a rat model of binge eating. Int J Eat Disord 40:136–142

    PubMed  Google Scholar 

  254. Hagan MM, Moss DE (1991) An animal model of bulimia nervosa: Opioid sensitivity to fasting episodes. Pharmacol Biochem Behav 39:421–422

    PubMed  CAS  Google Scholar 

  255. Makino S, Asaba K, Nishiyama M, Hashimoto K (1999) Decreased type 2 corticotroping-releasing hormone receptor mRNA expression in the ventromedial hypothalamus during repeated immobilization stress. Neuroendocrinology 70:160–167

    PubMed  CAS  Google Scholar 

  256. Sergeyev V, Fetissov S, Mathé AA et al (2005) Neuropeptide expression in rats exposed to chronic mild stresses. Psychopharmacology (Berl) 178:115–124

    CAS  Google Scholar 

  257. Kuikka JT, Tammela LI, Karhunen LJ et al (2001) Reduced serotonin transporter ­binding in binge eating women. Psychophar­macology (Berl) 155:310–314

    CAS  Google Scholar 

  258. Akana SF, Dallman MF (1997) Chronic cold in adrenalectomized, corticosterone (B)-treated rats: Facilitated corticotropin responses to acute restraint emerge as B increases. Endocrinology 138:3249–3258

    PubMed  CAS  Google Scholar 

  259. Bhatnagar S, Dallman M (1998) Neuroanatomical basis for facilitation of hypothalamic-pituitary-adrenal responses to a novel stressor after chronic stress. Neuroscience 84:1025–1039

    PubMed  CAS  Google Scholar 

  260. Figueiredo HF, Bodie BL, Tauchi M, Dolgas CM, Herman JP (2003) Stress integration after acute and chronic predator stress: ­differential activation of central stress circuitry and sensitization of the hypothalamo-pituitary-adrenocortical axis. Endocrinology 144:5249–5258

    PubMed  CAS  Google Scholar 

  261. Makino S, Smith MA, Gold PW (1995) Increased expression of corticotropin-releasing hormone and vasopressin messenger ribonucleic acid (mRNA) in the hypothalamic paraventricular nucleus during repeated stress: Association with reduction in glucocorticoid receptor mRNA levels. Endocrinology 136:3299–3309

    PubMed  CAS  Google Scholar 

  262. Pecoraro N, Dallman MF, Warne JP et al (2006) From Malthus to motive: How the HPA axis engineers the phenotype, yoking needs to wants. Prog Neurobiol 79:247–340

    PubMed  CAS  Google Scholar 

  263. Andrew R, Phillips DIW, Walker BR (1998) Obesity and gender influence cortisol secretion and metabolism in man. J Clin Endocrinol Metab 83:1806–1809

    PubMed  CAS  Google Scholar 

  264. Pasquali R (1998) Is the hypothalamic-­pituitary-adrenal axis really hyperactivated in ­visceral obesity? J Endocrinol Invest 21:268–271

    PubMed  CAS  Google Scholar 

  265. Rebuffé-Scrive M, Walsh UA, McEwen B, Rodin J (1992) Effect of chronic stress and exogenous glucocorticoids on regional fat distribution and metabolism. Physiol Behav 52:583–590

    PubMed  Google Scholar 

  266. Ur E, Grossman A, Deprés J (1996) Obesity results as a consequence of glucocorticoid induced leptin resistance. Horm Metab Res 28:744–747

    PubMed  CAS  Google Scholar 

  267. Epel ES, McEwen B, Seeman T et al (2000) Stress and body shape: Stress-induced cortisol secretion is consistently greater among women with central fat. Psychosom Med 62:623–632

    PubMed  CAS  Google Scholar 

  268. Pasquali R, Cantobelli S, Casimirri F et al (1993) The hypothalamic-pituitary-adrenal axis in obese women with different patterns of body fat distribution. J Clin Endocrinol Metab 77:341–346

    PubMed  CAS  Google Scholar 

  269. Pasquali R, Anconetani B, Chattat R et al (1996) Hypothalamic-pituitary-adrenal axis activity and its relationship to the autonomic nervous system in women with visceral and subcutaneous obesity: effects of the corticotropin-releasing factor/arginine-vasopressin test and of stress. Metab Clin Exp 45:351–356

    PubMed  CAS  Google Scholar 

  270. Vicennati V, Ceroni L, Gagliardi L, Gambineri A, Pasquali R (2002) Response of the hypothalamic-pituitary-adrenocortical axis to high-protein/fat and high-carbohydrate meals in women with different obesity phenotypes. J Clin Endocrinol Metab 87:3984–3988

    PubMed  CAS  Google Scholar 

  271. Richard D, Rivest R, Naïmi N, Timofeeva E, Rivest S (1996) Expression of corticotropin-releasing factor and its receptors in the brain of lean and obese Zucker rats. Endocrinology 137:4786–4795

    PubMed  CAS  Google Scholar 

  272. Timofeeva E, Richard D (1997) Functional activation of CRH neurons and expression of the genes encoding CRH and its receptors in food-deprived lean (Fa/?) and obese (fa/fa) Zucker rats. Neuroendocrinology 66:327–340

    PubMed  CAS  Google Scholar 

  273. Coleman DL, Burkart DL (1977) Plasma corticosterone concentrations in diabetic (db) mice. Diabetologia 13:25–26

    PubMed  CAS  Google Scholar 

  274. Guillaume-Gentil C, Rohner-Jeanrenaud F, Abramo F, Bestetti GE, Rossi GL, Jeanrenaud B (1990) Abnormal regulation of the ­hypothalamo-pituitary-adrenal axis in the genetically obese fa/fa rat. Endocrinology 126:1873–1879

    PubMed  CAS  Google Scholar 

  275. Levin BE (2006) Metabolic imprinting: Critical impact of the perinatal environment on the regulation of energy homeostasis. Philos Trans R Soc Lond B Biol Sci 361:1107–1121

    PubMed  CAS  Google Scholar 

  276. Guo F, Jen KC (1995) High-fat feeding ­during pregnancy and lactation affects offspring metabolism in rats. Physiol Behav 57:681–686

    PubMed  CAS  Google Scholar 

  277. Wu Q, Mizushima Y, Komiya M, Matsuo T, Suzuki M (1998) Body fat accumulation in the male offspring of rats fed high-fat diet. J Clin Biochem Nutr 25:71–79

    CAS  Google Scholar 

  278. Levin BE, Dunn-Meynell A (2002) Maternal obesity alters adiposity and monoamine function in genetically predisposed offspring. Am J Physiol 283:R1087–R1093

    Google Scholar 

  279. Whitaker RC (2004) Predicting preschooler obesity at birth: The role of maternal obesity in early pregnancy. Pediatrics 114:e29–e36

    PubMed  Google Scholar 

  280. Ravelli G, Stein ZA, Susser MW (1976) Obesity in young men after famine exposure in utero and early infancy. N Engl J Med 295:349–353

    PubMed  CAS  Google Scholar 

  281. McMillen IC, Adam CL, Mühlhäusler BS (2005) Early origins of obesity: Programming the appetite regulatory system. J Physiol (Lond) 565:9–17

    CAS  Google Scholar 

  282. Anguita RM, Sigulem DM, Sawaya AL (1993) Intrauterine food restriction is associated with obesity in young rats. J Nutr 123:1421–1428

    PubMed  CAS  Google Scholar 

  283. Jones AP, Assimon SA, Friedman MI (1986) The effect of diet on food intake and adiposity in rats made obese by gestational undernutrition. Physiol Behav 37:381–386

    PubMed  CAS  Google Scholar 

  284. Jones AP, Simson EL, Friedman MI (1984) Gestational undernutrition and the development of obesity in rats. J Nutr 114:1484–1492

    PubMed  CAS  Google Scholar 

  285. Levin BE, Magnan C, Migrenne S, Chua SC Jr, Dunn-Meynell AA (2005) F-DIO obesity-prone rat is insulin resistant before obesity onset. Am J Physiol 289:R704–R711

    CAS  Google Scholar 

  286. Faust IM, Johnson PR, Hirsch J (1980) Long-term effects of early nutritional experience on the development of obesity in the rat. J Nutr 110:2027–2034

    PubMed  CAS  Google Scholar 

  287. Kennedy GC (1957) The development with age of hypothalamic restraint upon the appetite of the rat. J Endocrinol 16:9–17

    PubMed  CAS  Google Scholar 

  288. Levin BE, Triscari J, Marquet E, Sullivan AC (1984) Dietary obesity and neonatal sympathectomy I. Effects on body composition and brown adipose. Am J Physiol 247:R979–R987

    PubMed  CAS  Google Scholar 

  289. Oscai LB, McGarr JA (1978) Evidence that the amount of food consumed in early life fixes appetite in the rat. Am J Physiol 235:R141–R144

    PubMed  CAS  Google Scholar 

  290. Rising R, Lifshitz F (2005) Relationship between maternal obesity and infant feeding-interactions. Nutrition J 4:17

    Google Scholar 

  291. Stunkard AJ, Berkowitz R, Stallings VA, Schoeller DA (1999) Energy intake, not energy output, is a determinant of body size in infants. Am J Clin Nutr 69:524–530

    PubMed  CAS  Google Scholar 

  292. Stunkard AJ, Berkowitz RI, Schoeller D, Maislin G, Stallings VA (2004) Predictors of body size in the first 2 y of life: a high-risk study of human obesity. Int J Obes Relat Metab Disord 28:503–513

    PubMed  CAS  Google Scholar 

  293. Halmi KA, Tozzi F, Thornton LM et al (2005) The relation among perfectionism, obsessive-compulsive personality disorder and obsessive-compulsive disorder in individuals with eating disorders. Int J Eat Disord 38:371–374

    PubMed  Google Scholar 

  294. Casper RC, Hedeker D, McClough JF (1992) Personality dimensions in eating disorders and their relevance for subtyping. J Am Acad Child Adolesc Psychiatry 31:830–840

    PubMed  CAS  Google Scholar 

  295. Brewerton TD, Lydiard RB, Herzog DB, Brotman AW, O’Neil PM, Ballenger JC (1995) Comorbidity of axis I psychiatric disorders in bulimia nervosa. J Clin Psychiatry 56:77–80

    PubMed  CAS  Google Scholar 

  296. Volkow ND, Wang G, Fowler JS, Telang F (2008) Overlapping neuronal circuits in addiction and obesity: Evidence of systems pathology. Philos Trans R Soc Lond B Biol Sci 363:3191–3200

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hancock, S.D., Olmstead, M.C. (2011). Animal Models of Eating Disorders. In: Olmstead, M. (eds) Animal Models of Drug Addiction. Neuromethods, vol 53. Humana Press. https://doi.org/10.1007/978-1-60761-934-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-934-5_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-933-8

  • Online ISBN: 978-1-60761-934-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics