Skip to main content

Placental-Derived Stem Cells: Potential Clinical Applications

  • Chapter
  • First Online:
Stem Cells & Regenerative Medicine

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Placental-derived stem cells are easily accessible and do not have many of the limitations of embryonic stem cells and their derivatives for use in clinical trials. Preclinical animal studies using amnion and, more recently, human amnion epithelial cells (hAECs) have provided evidence of many exciting potential clinical applications. We have characterized hAECs derived from term gestational tissues and investigated their potential application in the treatment of adult and perinatal lung injury. Studies by our group have shown that hAECs display key features of pluripotent stem cells. They do not form teratomas after transplantation into the testes of immunodeficient mice, and they have restricted expression of major histocompatibility antigens in vitro. hAECs also appear to suppress lymphocyte proliferation. Collectively, these findings indicate that hAECs may elicit minimal immune recognition following transplantation to an allogeneic recipient in their native form. Our observations on the reparative effects of hAECs in adult models of lung injury have encouraged us to investigate their potential use as a cellular therapy in the treatment of bronchopulmonary dysplasia and respiratory distress syndrome of preterm infants. In an in utero ventilation model in fetal sheep, our preliminary results indicate that administration of hAECs reduces inflammation and fibrosis, thus providing a potential novel cellular therapy in the treatment of the very preterm infant. Our research on multipotential amnion-derived epithelial stem cells may well revolutionize the approach to the use of stem cells in clinical therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomas, E.D., Lochte, H.L., Jr., Lu, W.C. et al. (1957) Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N. Engl. J. Med. 257, 491–496.

    Article  PubMed  CAS  Google Scholar 

  2. Togel, F. and Westenfelder, C. (2007) Adult bone marrow-derived stem cells for organ regeneration and repair. Dev. Dyn. 236, 3321–3331.

    Article  PubMed  CAS  Google Scholar 

  3. MacMillan, M.L., Davies, S.M., Nelson, G.O. et al. (2008) Twenty years of unrelated donor bone marrow transplantation for pediatric acute leukemia facilitated by the National Marrow Donor Program. Biol. Blood Marrow Transplant. 14, 16–22.

    Article  PubMed  Google Scholar 

  4. Picinich, S.C., Mishra, P.J., Mishra, P.J. et al. (2007) The therapeutic potential of mesenchymal stem cells. Cell- & tissue-based therapy. Expert Opin. Biol. Ther. 7, 965–973.

    Article  PubMed  CAS  Google Scholar 

  5. Pittenger, M.F., Mackay, A.M., Beck, S.C. et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science. 284, 143–147.

    Article  PubMed  CAS  Google Scholar 

  6. Hohaus, C., Ganey, T.M., Minkus, Y. et al. (2008) Cell transplantation in lumbar spine disc degeneration disease. Eur. Spine J. 17 Suppl 4, 492–503.

    Article  PubMed  Google Scholar 

  7. Melrose, J., Roberts, S., Smith, S. et al. (2002) Increased nerve and blood vessel ingrowth associated with proteoglycan depletion in an ovine anular lesion model of experimental disc degeneration. Spine. 27, 1278–1285.

    Article  PubMed  Google Scholar 

  8. Goldschlager, T., Itescu, S., Ghosh, P. et al. Allogeneic mesenchymal precursor cells safely and effectively increase the rate and robustness of cervical interbody fusion. In: Orthopedic Research Society 55th Annual Meeting. Las Vegas, 2009.

    Google Scholar 

  9. Tomita, S., Mickle, D.A., Weisel, R.D. et al. (2002) Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation. J. Thorac. Cardiovasc. Surg. 123, 1132–1140.

    Article  PubMed  Google Scholar 

  10. Kinnaird, T., Stabile, E., Burnett, M.S. et al. (2004) Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation. 109, 1543–1549.

    Article  PubMed  CAS  Google Scholar 

  11. Silva, G.V., Litovsky, S., Assad, J.A. et al. (2005) Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation. 111, 150–156.

    Article  PubMed  CAS  Google Scholar 

  12. Berry, M.F., Engler, A.J., Woo, Y.J. et al. (2006) Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. Am. J. Physiol. Heart Circ. Physiol. 290, H2196–H2203.

    Article  PubMed  CAS  Google Scholar 

  13. Liu, N., Chen, R., Du, H. et al. (2009) Expression of IL-10 and TNF-alpha in rats with cerebral infarction after transplantation with mesenchymal stem cells. Cell. Mol. Immunol. 6, 207–213.

    Article  PubMed  Google Scholar 

  14. Ortiz, L.A., Gambelli, F., McBride, C. et al. (2003) Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc. Natl. Acad. Sci. USA. 100, 8407–8411.

    Article  PubMed  CAS  Google Scholar 

  15. Lee, K.D., Kuo, T.K., Whang-Peng, J. et al. (2004) In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology. 40, 1275–1284.

    Article  PubMed  CAS  Google Scholar 

  16. Le Blanc, K., Frassoni, F., Ball, L. et al. (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet. 371, 1579–1586.

    Article  PubMed  CAS  Google Scholar 

  17. De Coppi, P., Bartsch, G., Siddiqui, M.M. et al. (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat. Biotech. 25, 100–106.

    Article  CAS  Google Scholar 

  18. Serikov, V., Hounshell, C., Larkin, S. et al. (2009) Human term placenta as a source of hematopoietic cells. Exp. Biol. Med. 234, 813–823.

    Article  CAS  Google Scholar 

  19. Lubin, B.H., Eraklis, M. and Apicelli, G. (1999) Umbilical cord blood banking. Adv. Pediatr. 46, 383–408.

    PubMed  CAS  Google Scholar 

  20. Mazurier, F., Doedens, M., Gan, O.I. et al. (2003) Characterization of cord blood ­hematopoietic stem cells. Ann. N. Y. Acad. Sci. 996, 67–71.

    Article  PubMed  Google Scholar 

  21. Alviano, F., Fossati, V., Marchionni, C. et al. (2007) Term Amniotic membrane is a high throughput source for multipotent Mesenchymal Stem Cells with the ability to differentiate into endothelial cells in vitro. BMC Dev. Biol. 7, 11.

    Article  PubMed  CAS  Google Scholar 

  22. Soncini, M., Vertua, E., Gibelli, L. et al. (2007) Isolation and characterization of ­mesenchymal cells from human fetal membranes. J. Tissue Eng. Regen. Med. 1, 296–305.

    Article  PubMed  CAS  Google Scholar 

  23. Troyer, D.L. and Weiss, M.L. (2008) Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells. 26, 591–599.

    Article  PubMed  Google Scholar 

  24. Ballen, K.K. (2005) New trends in umbilical cord blood transplantation. Blood. 105, 3786–3792.

    Article  PubMed  CAS  Google Scholar 

  25. Samuel, G.N., Kerridge, I.H. and O’Brien, T.A. (2008) Umbilical cord blood banking: public good or private benefit? Med. J. Aust. 188, 533–535.

    PubMed  Google Scholar 

  26. Yen, B.L., Huang, H.I., Chien, C.C. et al. (2005) Isolation of multipotent cells from human term placenta. Stem Cells. 23, 3–9.

    Article  PubMed  CAS  Google Scholar 

  27. Miki, T. and Strom, S. (2006) Amnion-derived pluripotent/multipotent stem cells. Stem Cell Revs. 2, 133–141.

    Article  CAS  Google Scholar 

  28. Fauza, D. (2004) Amniotic fluid and placental stem cells. Best. Pract. Res. Clin. Obstet. Gynaecol. 18, 877–891.

    Article  PubMed  Google Scholar 

  29. Serikov, V. and Kuypers, F. (2008) Human term placenta as a source of hematopoietic stem cells. Cell. Transpl. Tissue Eng. 3, 51–56.

    Google Scholar 

  30. Barcena, A., Muench, M.O., Kapidzic, M. et al. (2009) A new role for the human placenta as a hematopoietic site throughout gestation. Reprod. Sci. 16, 178–187.

    Article  PubMed  Google Scholar 

  31. Barlow, S., Brooke, G., Chatterjee, K. et al. (2008) Comparison of human placenta- and bone marrow-derived multipotent mesenchymal stem cells. Stem Cells Dev. 17, 1095–1107.

    Article  PubMed  Google Scholar 

  32. Brooke, G., Rossetti, T., Pelekanos, R. et al. (2009) Manufacturing of human placenta-derived mesenchymal stem cells for clinical trials. Br. J. Haematol. 144, 571–579.

    Article  PubMed  Google Scholar 

  33. Ilancheran, S., Moodley, Y. and Manuelpillai, U. (2009) Human fetal membranes: a source of stem cells for tissue regeneration and repair? Placenta. 30, 2–10.

    Article  PubMed  CAS  Google Scholar 

  34. Miki, T., Lehmann, T., Cai, H. et al. (2005) Stem Cell Characteristics of Amniotic Epithelial Cells. Stem Cells. 23, 1549–1559.

    Article  PubMed  CAS  Google Scholar 

  35. Ilancheran, S., Michalska, A., Peh, G. et al. (2007) Stem cells derived from human fetal membranes display multilineage differentiation potential. Biol. Reprod. 77, 577–588.

    Article  PubMed  CAS  Google Scholar 

  36. Owen, M. and Friedenstein, A.J. (1988) Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found. Symp. 136, 42–60.

    PubMed  CAS  Google Scholar 

  37. Long, X., Olszewski, M., Huang, W. et al. (2005) Neural cell differentiation in vitro from adult human bone marrow mesenchymal stem cells. Stem Cells Dev. 14, 65–69.

    Article  PubMed  CAS  Google Scholar 

  38. Diwan, S.B. and Stevens, L.C. (1976) Development of teratomas from the ectoderm of mouse egg cylinders. J. Natl. Cancer Inst. 57, 937–942.

    PubMed  CAS  Google Scholar 

  39. Fliniaux, I., Viallet, J.P., Dhouailly, D. et al. (2004) Transformation of amnion epithelium into skin and hair follicles. Differentiation. 72, 558–565.

    Article  PubMed  CAS  Google Scholar 

  40. Sakuragawa, N., Misawa, H., Ohsugi, K. et al. (1997) Evidence for active acetylcholine metabolism in human amniotic epithelial cells: applicable to intracerebral allografting for neurologic disease. Neuro. Lett. 232, 53–56.

    Article  CAS  Google Scholar 

  41. Elwan, M. and Sakuragawa, N. (1997) Evidence for synthesis and release of catecholamines by human amniotic epithelial cells. Neuroreport. 8, 3435–3438.

    Article  PubMed  CAS  Google Scholar 

  42. Sakuragawa, N., Enosawa, S., Ishii, T. et al. (2000) Human amniotic epithelial cells are promising transgene carriers for allogeneic cell transplantation into liver. J. Hum. Genetics. 45, 171–176.

    Article  CAS  Google Scholar 

  43. Takashima, S., Ise, H., Zhao, P. et al. (2004) Human amniotic epithelial cells possess ­hepatocyte-like characteristics and functions. Cell. Struct. Funct. 29, 73–84.

    Article  PubMed  CAS  Google Scholar 

  44. Wei, J.P., Zhang, T.S., Kawa, S. et al. (2003) Human amnion-isolated cells normalize blood glucose in streptozotocin-induced diabetic mice. Cell Transpl. 12, 545–552.

    Google Scholar 

  45. Cargnoni, A., Gibelli, L., Tosini, A. et al. (2009) Transplantation of allogeneic and ­xenogeneic placenta-derived cells reduces bleomycin-induced lung fibrosis. Cell Transpl. 18, 405–422.

    Google Scholar 

  46. Mellor, A.L. and Munn, D.H. (2000) Immunology at the maternal-fetal interface: lessons for T cell tolerance and suppression. Ann. Rev. Immunol. 18, 367–391.

    Article  CAS  Google Scholar 

  47. Akle, C.A., Adinolfi, M., Welsh, K.I. et al. (1981) Immunogenicity of human amniotic ­epithelial cells after transplantation into volunteers. Lancet. 2, 1003–1005.

    Article  PubMed  CAS  Google Scholar 

  48. Trelford, J.D. and Trelford-Sauder, M. (1979) The amnion in surgery, past and present. Am. J. Obstet. Gynecol. 134, 833–845.

    PubMed  CAS  Google Scholar 

  49. Subrahmanyam, M. (1994) Honey-impregnated gauze versus amniotic membrane in the treatment of burns. Burns. 20, 331–333.

    Article  PubMed  CAS  Google Scholar 

  50. Subrahmanyam, M. (1995) Amniotic membrane as a cover for microskin grafts. Br. J. Plast. Surg. 48, 477–478.

    Article  PubMed  CAS  Google Scholar 

  51. Dua, H.S., Gomes, J.A.P., King, A.J. et al. (2004) The amniotic membrane in ophthalmology. Surv. Ophthalmol. 49, 51–77.

    Article  PubMed  Google Scholar 

  52. Yeager, A.M., Singer, H.S., Buck, J.R. et al. (1985) A therapeutic trial of amniotic epithelial cell implantation in patients with lysosomal storage diseases. Am. J. Med. Genet. 22, 347–355.

    Article  PubMed  CAS  Google Scholar 

  53. Tylki-Szymanska, A., Maciejko, D., Kidawa, M. et al. (1985) Amniotic tissue transplantation as a trial of treatment in some lysosomal storage diseases. J. Inherit. Metab. Dis. 8, 101–104.

    Article  PubMed  CAS  Google Scholar 

  54. Adinolfi, M., Akle, C.A., McColl, I. et al. (1982) Expression of HLA antigens, beta 2-microglobulin and enzymes by human amniotic epithelial cells. Nature. 295, 325–327.

    Article  PubMed  CAS  Google Scholar 

  55. Hsi, B.-L., Samson, M., Grivaux, C., et al. (1988) Topographical expression of class I major histocompatibility complex antigens on human amniotic epithelium. J. Reprod. Immunol. 13, 183–191.

    Article  PubMed  CAS  Google Scholar 

  56. Hunt, J., Andrews, G., Fishback, J. et al. (1988) Amnion membrane epithelial cells express class I HLA and contain class I HLA mRNA. J. Immunol. 140, 2790–2795.

    PubMed  CAS  Google Scholar 

  57. Houlihan, J., Biro, P., Harper, H. et al. (1995) The human amnion is a site of MHC class Ib expression: evidence for the expression of HLA-E and HLA-G. J. Immunol. 154, 5665–5674.

    PubMed  CAS  Google Scholar 

  58. Lefebvre, S., Adrian, F., Moreau, P. et al. (2000) Modulation of HLA-G expression in human thymic and amniotic epithelial cells. Hum. Immunol. 61, 1095–1101.

    Article  PubMed  CAS  Google Scholar 

  59. Kubo, M., Sonoda, Y., Muramatsu, R. et al. (2001) Immunogenicity of human amniotic ­membrane in experimental xenotransplantation. Invest. Ophthalmol. Vis. Sci. 42, 1539–1546.

    PubMed  CAS  Google Scholar 

  60. Bailo, M., Soncini, M., Vertua, E. et al. (2004) Engraftment potential of human amnion and chorion cells derived from term placenta. Transplantation. 78, 1439–1448.

    Article  PubMed  Google Scholar 

  61. Hori, J., Wang, M., Kamiya, K. et al. (2006) Immunological characteristics of amniotic epithelium. Cornea. 25, S53–S58.

    Article  PubMed  Google Scholar 

  62. Li, H., Niederkorn, J.Y., Neelam, S. et al. (2005) Immunosuppressive factors secreted by human amniotic epithelial cells. Invest. Ophthalmol. Vis. Sci. 46, 900–907.

    Article  PubMed  Google Scholar 

  63. Kakishita, K., Elwan, M.A., Nakao, N. et al. (2000) Human amniotic epithelial cells produce dopamine and survive after implantation into the striatum of a rat model of Parkinson’s Disease: a potential source of donor for transplantation therapy. Exper. Neuro. 165, 27–34.

    Article  CAS  Google Scholar 

  64. Kakishita, K., Nakao, N., Sakuragawa, N. et al. (2003) Implantation of human amniotic epithelial cells prevents the degeneration of nigral dopamine neurons in rats with 6-hydroxydopamine lesions. Brain Res. 980, 48–56.

    Article  PubMed  CAS  Google Scholar 

  65. Kong, X.Y., Cai, Z., Pan, L. et al. (2008) Transplantation of human amniotic cells exerts neuroprotection in MPTP-induced Parkinson disease mice. Brain Res. 1205, 108–115.

    Article  PubMed  CAS  Google Scholar 

  66. Sankar, V. and Muthusamy, R. (2003) Role of human amniotic epithelial cell transplantation in spinal cord injury repair research. Neuroscience. 118, 11–17.

    Article  PubMed  CAS  Google Scholar 

  67. Wu, Z., Hui, G., Lu, Y. et al. (2006) Transplantation of human amniotic epithelial cells improves hindlimb function in rats with spinal cord injury. Chin. Med. J. (Engl). 119, 2101–2107.

    PubMed  Google Scholar 

  68. Takahashi, S., Ohsugi, K., Yamamoto, T. et al. (2001) A novel approach to ex vivo gene therapy for familial hypercholesterolemia using human amniotic epithelial cells as a ­transgene carrier. Tohoku. J. Exp. Med. 193, 279–292.

    Article  PubMed  CAS  Google Scholar 

  69. Chang, C.-M., Kao, C.-L., Chang, Y.-L. et al. (2007) Placenta-derived multipotent stem cells induced to differentiate into insulin-positive cells. Biochem. Biophys. Res. Comm. 357, 414–420.

    Article  PubMed  CAS  Google Scholar 

  70. Hou, Y., Huang, Q., Liu, T. et al. (2008) Human amnion epithelial cells can be induced to differentiate into functional insulin-producing cells. Acta Biochim. Biophys. Sin. 40, 830–839.

    PubMed  CAS  Google Scholar 

  71. White, E.S., Lazar, M.H. and Thannickal, V.J. (2003) Pathogenetic mechanisms in usual interstitial pneumonia/idiopathic pulmonary fibrosis. J. Pathol. 201, 343–354.

    Article  PubMed  CAS  Google Scholar 

  72. Thannickal, V.J., Toews, G.B., White, E.S. et al. (2004) Mechanisms of pulmonary fibrosis. Ann. Rev. Med. 55, 395–417.

    Article  PubMed  CAS  Google Scholar 

  73. Bergeron, C. and Boulet, L.P. (2006) Structural changes in airway diseases: characteristics, mechanisms, consequences, and pharmacologic modulation. Chest. 129, 1068–1087.

    Article  PubMed  CAS  Google Scholar 

  74. Spurzem, J.R. and Rennard, S.I. (2005) Pathogenesis of COPD. Semin. Respir. Crit. Care Med. 26, 142–153.

    Article  PubMed  Google Scholar 

  75. Xaubet, A., Agusti, C., Luburich, P. et al. (1998) Pulmonary function tests and CT scan in the management of idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 158, 431–436.

    Article  PubMed  CAS  Google Scholar 

  76. Bourke, S.J. (2006) Interstitial lung disease: progress and problems. Postgrad. Med. J. 82, 494–499.

    Article  PubMed  CAS  Google Scholar 

  77. Gharaee-Kermani, M. and Phan, S.H. (2005) Molecular mechanisms of and possible ­treatment strategies for idiopathic pulmonary fibrosis. Curr. Pharm. Des. 11, 3943–3971.

    Article  PubMed  CAS  Google Scholar 

  78. Carraro, G., Perin, L., Sedrakyan, S. et al. (2008) Human amniotic fluid stem cells can ­integrate and differentiate into epithelial lung lineages. Stem Cells. 26, 2902–2911.

    Article  PubMed  CAS  Google Scholar 

  79. Ali, N.N., Edgar, A.J., Samadikuchaksaraei, A. et al. (2002) Derivation of type II alveolar epithelial cells from murine embryonic stem cells. Tissue Eng. 8, 541–550.

    Article  PubMed  CAS  Google Scholar 

  80. Aoshiba, K., Tsuji, T. and Nagai, A. (2003) Bleomycin induces cellular senescence in ­alveolar epithelial cells. Eur. Respir. J. 22, 436–443.

    Article  PubMed  CAS  Google Scholar 

  81. Allison, B.J., Crossley, K.J., Flecknoe, S.J. et al. (2008) Ventilation of the very immature lung in utero induces injury and BPD-like changes in lung structure in fetal sheep. Pediatr. Res. 64, 387–392.

    Article  PubMed  Google Scholar 

  82. Pillow, J.J., Jobe, A.H., Collins, R.A. et al. (2004) Variability in preterm lamb lung mechanics after intra-amniotic endotoxin is associated with changes in surfactant pool size and morphometry. Am. J. Physiol. Lung Cell. Mol. Physiol. 287, L992–998.

    Article  PubMed  CAS  Google Scholar 

  83. Kallapur, S.G., Moss, T.J., Ikegami, M. et al. (2005) Recruited inflammatory cells mediate endotoxin-induced lung maturation in preterm fetal lambs. Am. J. Respir. Crit. Care Med. 172, 1315–1321.

    Article  PubMed  Google Scholar 

  84. Cheah, F.C., Jobe, A.H., Moss, T.J. et al. (2008) Oxidative stress in fetal lambs exposed to intra-amniotic endotoxin in a chorioamnionitis model. Pediatr. Res. 63, 274–279.

    Article  PubMed  CAS  Google Scholar 

  85. Kramer, B.W., Kallapur, S.G., Moss, T.J. et al. (2009) Intra-amniotic LPS modulation of TLR signaling in lung and blood monocytes of fetal sheep. Innate Immun. 15, 101–107.

    Article  PubMed  CAS  Google Scholar 

  86. Kallapur, S.G., Nitsos, I., Moss, T.J. et al. (2009) IL-1 mediates pulmonary and systemic inflammatory responses to chorioamnionitis induced by lipopolysaccharide. Am. J. Respir. Crit. Care Med. 179, 955–961.

    Article  PubMed  CAS  Google Scholar 

  87. Kramer, B.W., Kallapur, S., Newnham, J. et al. (2009) Prenatal inflammation and lung ­development. Semin. Fetal Neonata.l Med. 14, 2–7.

    Article  Google Scholar 

  88. Jobe, A.H. (2003) Antenatal factors and the development of bronchopulmonary dysplasia. Semin. Neonatol. 8, 9–17.

    Article  PubMed  Google Scholar 

  89. Parolini, O., Alviano, F., Bagnara, G.P. et al. (2008) Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells. 26, 300–311.

    Article  PubMed  Google Scholar 

  90. Wolbank, S., Peterbauer, A., Fahrner, M. et al. (2007) Dose-dependent immunomodulatory effect of human stem cells from amniotic membrane: a comparison with human mesenchymal stem cells from adipose tissue. Tissue Eng. 13, 1173–1183.

    Article  PubMed  CAS  Google Scholar 

  91. Tamagawa, T., Ishiwata, I. and Saito, S. (2004) Establishment and characterization of a pluripotent stem cell line derived from human amniotic membranes and initiation of germ layers in vitro. Hum. Cell. 17, 125–130.

    Article  PubMed  Google Scholar 

  92. Banas, R.A., Trumpower, C., Bentlejewski, C. et al. (2008) Immunogenicity and immunomodulatory effects of amnion-derived multipotent progenitor cells. Hum. Immunol. 69, 321–328.

    Article  PubMed  CAS  Google Scholar 

  93. Laslett, A.L., Grimmond, S., Gardiner, B. et al. (2007) Transcriptional analysis of early lineage commitment in human embryonic stem cells. BMC Dev. Biol. 7, 12.

    Article  PubMed  CAS  Google Scholar 

  94. Verda, L., Kim, D.A., Ikehara, S. et al. (2008) Hematopoietic mixed chimerism derived from allogeneic embryonic stem cells prevents autoimmune diabetes mellitus in NOD mice. Stem Cells. 26, 381–386.

    Article  PubMed  CAS  Google Scholar 

  95. Draper, J.S., Pigott, C., Thomson, J.A. et al. (2002) Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J. Anat. 200, 249–258.

    Article  PubMed  CAS  Google Scholar 

  96. Reubinoff, B.E., Pera, M.F., Fong, C.-Y. et al. (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotech. 18, 399–404.

    Article  CAS  Google Scholar 

  97. Simmons, P.J. and Torok-Storb, B. (1991) Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood. 78, 55–62.

    PubMed  CAS  Google Scholar 

  98. Hay, D.C., Sutherland, L., Clark, J. et al. (2004) Oct-4 Knockdown Induces Similar Patterns of Endoderm and Trophoblast Differentiation Markers in Human and Mouse Embryonic Stem Cells. Stem Cells. 22, 225–235.

    Article  PubMed  CAS  Google Scholar 

  99. Hyslop, L., Stojkovic, M., Armstrong, L. et al. (2005) Downregulation of NANOG Induces Differentiation of Human Embryonic Stem Cells to Extraembryonic Lineages. Stem Cells. 23, 1035–1043.

    Article  PubMed  CAS  Google Scholar 

  100. Wei, C.L., Miura, T., Robson, P. et al. (2005) Transcriptome Profiling of Human and Murine ESCs Identifies Divergent Paths Required to Maintain the Stem Cell State. Stem Cells. 23, 166–185.

    Article  PubMed  CAS  Google Scholar 

  101. Roche, S., Richard, M.J. and Favrot, M.C. (2007) Oct-4, Rex-1, and Gata-4 expression in human MSC increase the differentiation efficiency but not hTERT expression. J. Cell. Biochem. 101, 271–280.

    Article  PubMed  CAS  Google Scholar 

  102. Yang, C., Przyborski, S., Cooke, M.J. et al. (2008) A key role for telomerase reverse transcriptase unit in modulating human embryonic stem cell proliferation, cell cycle dynamics, and in vitro differentiation. Stem Cells. 26, 850–863.

    Article  PubMed  CAS  Google Scholar 

  103. Moodley, Y., IIancheran, S., Samuel, C., Vaghjiani, V., Atienza, D., Williams, E., Jenkin, G., Wallace, E., Trounson, A., and Manuelpillai, U. (2010) Human Amnion Epithelial Cell Transplantation Abrogates Lung Fibrosis and Augments Repair. Am. J. Respir. Crit. Care Med. Published 2nd June ahead of Print. doi: 10.1164/rccm.201001-0014OC.

    Google Scholar 

  104. Hodges, R., Jenkin, G., Hooper, S., Miller, S., Allison, B., Lim, R., and Wallace, E. (2010) Human amnion epithelial cells reduce ventilation-induced preterm lung injury. Reproductive Sciences 17(3) 67A Abs 1.

    Google Scholar 

  105. Murphy, S., Rosli, S., Acharya, R., Mathias, L., Lim, R., Wallace, E., and Jenkin, G. (2010) Amnion epithelial cell isolation and characterization for clinical use. Current Protocols in Stem Cell Biology. 1E.6.1-1E.6.24

    Google Scholar 

Download references

Acknowledgment

This work was supported by NH&MRC Project Grant No. 491145.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham Jenkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Murphy, S., Wallace, E., Jenkin, G. (2011). Placental-Derived Stem Cells: Potential Clinical Applications. In: Appasani, K., Appasani, R. (eds) Stem Cells & Regenerative Medicine. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-860-7_15

Download citation

Publish with us

Policies and ethics