Skip to main content

Reduced Graphs and Their Applications in Chemoinformatics

  • Protocol
  • First Online:
Chemoinformatics and Computational Chemical Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 672))

Abstract

Reduced graphs provide summary representations of chemical structures by collapsing groups of connected atoms into single nodes while preserving the topology of the original structures. This chapter reviews the extensive work that has been carried out on reduced graphs at The University of Sheffield and includes discussion of their application to the representation and search of Markush structures in patents, the varied approaches that have been implemented for similarity searching, their use in cluster representation, the different ways in which they have been applied to extract structure–activity relationships and their use in encoding bioisosteres.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gillet, V. J., Downs, G. M., Ling, A., Lynch, M. F., Venkataram, P., Wood, J. V., and Dethlefsen, W. (1987) Computer-storage and retrieval of generic chemical structures in patents. 8. Reduced chemical graphs and their applications in generic chemical-structure retrieval. Journal of Chemical Information and Computer Sciences 27, 126–137.

    CAS  Google Scholar 

  2. Rarey, M. and Dixon, J. S. (1998) Feature trees: A new molecular similarity measure based on tree matching. Journal of Computer-Aided Molecular Design 12, 471–490.

    Article  CAS  PubMed  Google Scholar 

  3. Rarey, M. and Stahl, M. (2001) Similarity searching in large combinatorial chemistry spaces. Journal of Computer-Aided Molecular Design 15, 497–520.

    Article  CAS  PubMed  Google Scholar 

  4. Stiefl, N., Watson, I. A., Baumann, K., and Zaliani, A. (2006) ErG: 2D pharmacophore descriptions for scaffold hopping. Journal of Chemical Information and Modeling 46, 208–220.

    Article  CAS  PubMed  Google Scholar 

  5. Stiefl, N. and Zaliani, A. (2006) A knowledge-based weighting approach to ligand-based virtual screening. Journal of Chemical Information and Modeling 46, 587–596.

    Article  CAS  PubMed  Google Scholar 

  6. Gillet, V. J., Downs, G. M., Holliday, J. D., Lynch, M. F., and Dethlefsen, W. (1991) Computer-storage and retrieval of generic chemical structures in patents. 13. Reduced-graph generation. Journal of Chemical Information and Computer Sciences 31, 260–270.

    CAS  Google Scholar 

  7. Lynch, M. F. and Holliday, J. D. (1996) The Sheffield Generic Structures Project – A retrospective review. Journal of Chemical Information and Computer Sciences 36, 930–936.

    CAS  Google Scholar 

  8. Shenton, K., Nortin, P., and Fearns, E. A. (1988) Generic Searching of Patent Information, in Chemical Structures – The International Language of Chemistry (Warr, W., Ed.), pp 169–178, Springer, Berlin.

    Chapter  Google Scholar 

  9. Fisanick, W. (1990) The chemical abstracts service generic chemical (Markush) structure storage and retrieval capability. Part 1. Basic concepts. Journal of Chemical Information and Computer Sciences 30, 145–154.

    CAS  Google Scholar 

  10. Ebe, T., Sanderson, K. A. and Wilson, P. S. (1991) The chemical abstracts service generic chemical (Markush) structure storage and retrieval capability. Part 2. The MARPAT file. Journal of Chemical Information and Computer Sciences 31, 31–36.

    CAS  Google Scholar 

  11. Carhart, R. E., Smith, D. H., and Venkataraghavan, R. (1985) Atom pairs as molecular features in structure activity studies – Definition and applications. Journal of Chemical Information and Computer Sciences 25, 64–73.

    CAS  Google Scholar 

  12. Willett, P., Winterman, V., and Bawden, D. (1986) Implementation of nearest-neighbor searching in an online chemical structure search system. Journal of Chemical Information and Computer Sciences 26, 36–41.

    CAS  Google Scholar 

  13. Brown, N. and Jacoby, E. (2006) On scaffolds and hopping in medicinal chemistry. Mini-Reviews in Medicinal Chemistry 6, 1217–1229.

    Article  CAS  PubMed  Google Scholar 

  14. Daylight. Daylight Chemical Information Systems, Inc., 120 Vantis – Suite 550, Aliso Viejo, CA 92656, USA. www.daylight.com at http://www.daylight.com.

  15. Gillet, V. J., Willett, P., and Bradshaw, J. (2003) Similarity searching using reduced graphs. Journal of Chemical Information and Computer Sciences 43, 338–345.

    CAS  PubMed  Google Scholar 

  16. Barker, E. J., Gardiner, E. J., Gillet, V. J., Kitts, P., and Morris, J. (2003) Further development of reduced graphs for identifying bioactive compounds. Journal of Chemical Information and Computer Sciences 43, 346–356.

    CAS  PubMed  Google Scholar 

  17. Harper, G., Bravi, G. S., Pickett, S. D., Hussain, J., and Green, D. V. S. (2004) The reduced graph descriptor in virtual screening and data-driven clustering of high-throughput screening data. Journal of Chemical Information and Computer Sciences 44, 2145–2156.

    CAS  PubMed  Google Scholar 

  18. Birchall, K., Gillet, V. J., Harper, G., and Pickett, S. D. (2006) Training similarity measures for specific activities: Application to reduced graphs. Journal of Chemical Information and Modeling 46, 577–586.

    Article  CAS  PubMed  Google Scholar 

  19. MDDR. Symyx Technologies Inc, 2440 Camino Ramon, Suite 300, San Ramon, CA 94583. http://www.symyx.com.

  20. Takahashi, Y., Sukekawa, M., and Sasaki, S. (1992) Automatic identification of molecular similarity using reduced graph representation of chemical structure. Journal of Chemical Information and Computer Sciences 32, 639–643.

    CAS  Google Scholar 

  21. Barker, E. J., Cosgrove, D. A., Gardiner, E. J., Gillet, V. J., Kitts, P., and Willett, P. (2006) Scaffold-hopping using clique detection applied to reduced graphs. Journal of Chemical Information and Modeling 46, 503–511.

    Article  CAS  PubMed  Google Scholar 

  22. Bemis, G. W., and Murcko, M. A. (1996) The properties of known drugs. 1. Molecular frameworks. Journal of Medicinal Chemistry 39, 2887–2893.

    Article  CAS  PubMed  Google Scholar 

  23. Gardiner, E. J., Gillet, V. J., Willett, P., and Cosgrove, D. A. (2007) Representing clusters using a maximum common edge substructure algorithm applied to reduced graphs and molecular graphs. Journal of Chemical Information and Modeling 47, 354–366.

    Article  CAS  PubMed  Google Scholar 

  24. Bradbury, R. H., Allott, C. P., Dennis, M., Fisher, E., Major, J. S., Masek, B. B., Oldham, A. A., Pearce, R. J., Rankine, N., Revill, J. M., Roberts, D. A., and Russell, S. T. (1992) New nonpeptide angiotensin-II receptor antagonists. 2. Synthesis, biological properties, and structure-activity relationships of 2-alkyl-4-(biphenylmethoxy)quinoline derivatives. Journal of Medicinal Chemistry 35, 4027–4038.

    Article  CAS  PubMed  Google Scholar 

  25. Birchall, K., Gillet, V. J., Harper, G., and Pickett, S. D. (2008) Evolving interpretable structure-activity relationships. 1. Reduced graph queries. Journal of Chemical Information and Modeling 48, 1543–1557.

    Article  CAS  PubMed  Google Scholar 

  26. Birchall, K., Gillet, V. J., Harper, G., and Pickett, S. D. (2008) Evolving interpretable structure-activity relationship models. 2. Using multiobjective optimization to derive multiple models. Journal of Chemical Information and Modeling 48, 1558–1570.

    Article  CAS  PubMed  Google Scholar 

  27. Birchall, K., Gillet, V. J., Willett, P., Ducrot, P., and Luttmann, C. (2009) Use of reduced graphs to encode bioisosterism for similarity-based virtual screening. Journal of Chemical Information and Modeling 49, 1330–1346.

    Article  CAS  PubMed  Google Scholar 

  28. Ujvary, I. (1997) BIOSTER: A database of structurally analogous compounds. Pesticide Science 51, 92–95.

    Article  CAS  Google Scholar 

  29. WOMBAT. Sunset Molecular. Available at http://www.sunsetmolecular.com/.

  30. Hessler, G., Zimmermann, M., Matter, H., Evers, A., Naumann, T., Lengauer, T., and Rarey, M. (2005) Multiple-ligand-based virtual screening: Methods and applications of the MTree approach. Journal of Medicinal Chemistry 48, 6575–6584.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Birchall, K., Gillet, V.J. (2010). Reduced Graphs and Their Applications in Chemoinformatics. In: Bajorath, J. (eds) Chemoinformatics and Computational Chemical Biology. Methods in Molecular Biology, vol 672. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-839-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-839-3_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-838-6

  • Online ISBN: 978-1-60761-839-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics