Skip to main content

Methods for Combinatorial and Parallel Library Design

  • Protocol
  • First Online:
Chemoinformatics and Computational Chemical Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 672))

Abstract

Diversity has historically played a critical role in design of combinatorial libraries, screening sets and corporate collections for lead discovery. Large library design dominated the field in the 1990s with methods ranging anywhere from purely arbitrary through property based reagent selection to product based approaches. In recent years, however, there has been a downward trend in library size. This was due to increased information about the desirable targets gleaned from the genomics revolution and to the ever growing availability of target protein structures from crystallography and homology modeling. Creation of libraries directed toward families of receptors such as GPCRs, kinases, nuclear hormone receptors, proteases, etc., replaced the generation of libraries based primarily on diversity while single target focused library design has remained an important objective. Concurrently, computing grids and cpu clusters have facilitated the development of structure based tools that screen hundreds of thousands of molecules. Smaller “smarter” combinatorial and focused parallel libraries replaced those early un-focused large libraries in the twenty-first century drug design paradigm. While diversity still plays a role in lead discovery, the focus of current library design methods has shifted to receptor based methods, scaffold hopping/bio-isostere searching, and a much needed emphasis on synthetic feasibility. Methods such as “privileged substructures based design” and pharmacophore based design still are important methods for parallel and small combinatorial library design. This chapter discusses some of the possible design methods and presents examples where they are available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Burbaum, J. J., Ohlmeyer, M. H. J., Reader, J. C., Henderson, I., Dillard, L. W., Li, G., Randle, T. L., Sigal, N. H., Chelsky, D., and Baldwin, J. J. (1995) A paradigm for drug discovery employing encoded combinatorial libraries Proc. Natl. Acad. Sci. U.S.A. 92(13), 6027–6031

    Article  PubMed  CAS  Google Scholar 

  2. Blondelle, S. E., Crooks, E., Ostresh, J. M., and Houghten, R. A. (1999) Mixture-based heterocyclic combinatorial positional scanning libraries: Discovery of bicyclic guanidines having potent antifungal activities against Candida albicans and Cryptococcus neoformans Antimicrob. Agents Chemother. 43(1), 106–114

    PubMed  CAS  Google Scholar 

  3. Boger, D. L., Jiang, W., and Goldberg, J. (1999) Convergent solution-phase combinatorial synthesis with multiplication of diversity through rigid biaryl and diarylacetylene couplings J. Org. Chem. 64(19), 7094–7100

    Article  CAS  Google Scholar 

  4. Ferry, G., Boutin, J. A., Atassi, G., Fauchere, J. L., and Tucker, G. C. (1997) Selection of a histidine-containing inhibitor of gelatinases through deconvolution of combinatorial tetrapeptide libraries Mol. Divers. 2(3), 135–146

    Article  PubMed  CAS  Google Scholar 

  5. Lutzke, R. A. P., Eppens, N. A., Weber, P. A., Houghten, R. A., and Plasterk, R. H. A. (1995) Identification of a hexapeptide inhibitor of the human immunodeficiency virus integrase protein by using a combinatorial chemical library Proc. Natl. Acad. Sci. U.S.A. 92(25), 11456–11460

    Article  CAS  Google Scholar 

  6. Samson, I., Kerremans, L., Rozenski, J., Samyn, B., Van Beeumen, J., Van Aerschot, A., and Herdewijn, P. (1995) Identification of a peptide inhibitor against glycosomal phosphoglycerate kinase of Trypanosoma brucei by a synthetic peptide library approach Bioorg. Med. Chem. 3(3), 257–265

    Article  PubMed  CAS  Google Scholar 

  7. Bures, M. G., and Martin, Y. C. (1998) Computational methods in molecular diversity and combinatorial chemistry Curr. Opin. Chem. Biol. 2(3), 376–380

    Article  PubMed  CAS  Google Scholar 

  8. Van Drie, J. H., and Lajiness, M. S. (1998) Approaches to virtual library design Drug Discov. Today 3(6), 274–283

    Article  Google Scholar 

  9. Spellmeyer, D. C., and Grootenhuis, P. D. J. (1999) Recent developments in molecular diversity. Computational approaches to combinatorial chemistry Annu. Rep. Med. Chem. 34, 287–296

    Article  CAS  Google Scholar 

  10. Drewry, D. H., and Stanley Young, S. (1999) Approaches to the design of combinatorial libraries Chemom. Intell. Lab. Syst. 48(1), 1–20

    Article  CAS  Google Scholar 

  11. Leach, A. R., and Hann, M. M. (2000) The in silico world of virtual libraries Drug Discov. Today 5(8), 326–336

    Article  PubMed  CAS  Google Scholar 

  12. Lewis, R. A., Pickett, S. D., and Clark, D. E. (2000) Computer-aided molecular diversity analysis and combinatorial library design Rev. Comput. Chem. 16, 1–51

    Article  CAS  Google Scholar 

  13. Agrafiotis, D. K., Myslik, J. C., and Salemme, F. R. (1999) Advances in diversity profiling and combinatorial series design Annu. Rep. Comb. Chem. Mol. Divers. 2, 71–92

    CAS  Google Scholar 

  14. Willett, P. (2000) Chemoinformatics – Similarity and diversity in chemical libraries Curr. Opin. Biotechnol. 11(1), 85–88

    Article  PubMed  CAS  Google Scholar 

  15. Engels, M. F. M., and Venkatarangan, P. (2001) Smart screening: Approaches to efficient HTS Curr. Opin. Drug Discov. Devel. 4(3), 275–283

    PubMed  CAS  Google Scholar 

  16. Andersson, P. M., Sjostrom, M., Wold, S., and Lundstedt, T. (2001) Strategies for subset selection of parts of an in-house chemical library J. Chemom. 15(4), 353–369

    Article  CAS  Google Scholar 

  17. Andersson, P. M., Linusson, A., Wold, S., Sjostrom, M., Lundstedt, T., and Norden, B. (1999) Design of small libraries for lead exploration Mol. Divers. Drug Des. 197–220

    Google Scholar 

  18. Linusson, A., Gottfries, J., Lindgren, F., and Wold, S. (2000) Statistical molecular design of building blocks for combinatorial chemistry J. Med. Chem. 43(7), 1320–1328

    Article  PubMed  CAS  Google Scholar 

  19. Brannigan, L. H., Grieshaber, M. V., and Schnur, D. M. (1995) Experimental design in organic synthesis ACS Symp. Ser. 589(Computer-Aided Molecular Design), 225–235

    Google Scholar 

  20. Schnur, D. (1999) Design and diversity analysis of large combinatorial libraries using cell-based methods J. Chem. Inf. Comput. Sci. 39(1), 36–45

    Article  CAS  Google Scholar 

  21. Schnur, D. M., and Venkatrangan, P. (2001) Applications of cell-based diversity to combinatorial library design. In: Ghose, A. K. (ed). Combinatorial Design and Evaluation, Marcel Dekker, New York, NY

    Google Scholar 

  22. Olsson, T., and Oprea, T. I. (2001) Cheminformatics: A tool for decision-makers in drug discovery Curr. Opin. Drug Discov. Devel. 4(3), 308–313

    PubMed  CAS  Google Scholar 

  23. Xue, L., Stahura, F. L., and Bajorath, J. (2004) Cell-based partitioning Methods Mol. Biol. 275, 279–289

    Article  PubMed  CAS  Google Scholar 

  24. Pearlman Robert, S. DiverseSolutions Manual, Laboratory for Molecular Graphics and Theoretical Modeling, College of Pharmacy, University of Texas at Austin, Austin TX 78712

    Google Scholar 

  25. Cavallaro, C. L., Schnur, D.M., Johnson, S., and Tebben, A. Manuscript in preparation

    Google Scholar 

  26. van de Waterbeemd, H., Smith, D. A., Beaumont, K., and Walker, D. K. (2001) Property-based design: Optimization of drug absorption and pharmacokinetics J. Med. Chem. 44(9), 1313–1333

    Article  CAS  Google Scholar 

  27. Palm, K., Stenberg, P., Luthman, K., and Artursson, P. (1997) Polar molecular surface properties predict the intestinal absorption of drugs in humans Pharm. Res. 14(5), 568–571

    Article  PubMed  CAS  Google Scholar 

  28. Lipinski, C. A., Lombardo, F., Dominy, B. W., and Feeney, P. J. (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings Adv. Drug Deliv. Rev. 23(1–3), 3–25

    Article  CAS  Google Scholar 

  29. Oprea, T. I. (2002) Current trends in lead discovery: Are we looking for the appropriate properties? J. Comput. Aided Mol. Des. 16(5/6), 325–334

    Article  PubMed  CAS  Google Scholar 

  30. Oprea, T. I., Zamora, I., and Ungell, A. -L. (2002) Pharmacokinetically based mapping device for chemical space navigation J. Comb. Chem. 4(4), 258–266

    Article  PubMed  CAS  Google Scholar 

  31. Oprea, T. I., and Gottfries, J. (2000) Toward minimalistic modeling of oral drug absorption1 J. Mol. Graph. Model. 17(5/6), 261–274

    Google Scholar 

  32. Evans, B. E., Rittle, K. E., Bock, M. G., DiPardo, R. M., Freidinger, R. M., Whitter, W. L., Lundell, G. F., Veber, D. F., Anderson, P. S., et al. (1988) Methods for drug discovery: Development of potent, selective, orally effective cholecystokinin antagonists. J. Med. Chem. 31(12), 2235–2246

    Article  PubMed  CAS  Google Scholar 

  33. Patchett, A. A., and Nargund, R. P. (2000) Chapter 26. Privileged structures – An update Annu. Rep. Med. Chem. 35, 289–298

    Article  CAS  Google Scholar 

  34. Mason, J. S., Morize, I., Menard, P. R., Cheney, D. L., Hulme, C., and Labaudiniere, R. F. (1999) New 4-point pharmacophore method for molecular similarity and diversity applications: Overview of the method and applications, including a novel approach to the design of combinatorial libraries containing privileged substructures J. Med. Chem. 42(17), 3251–3264

    Article  PubMed  CAS  Google Scholar 

  35. Lamb, M. L., Bradley, E. K., Beaton, G., Bondy, S. S., Castellino, A. J., Gibbons, P. A., Suto, M. J., and Grootenhuis, P. D. J. (2004) Design of a gene family screening library targeting G-protein coupled receptors J. Mol. Graph. Model. 23(1), 15–21

    Article  PubMed  CAS  Google Scholar 

  36. Savchuk, N. P., Tkachenko, S. E., and Balakin, K. V. (2005) Rational design of GPCR-specific combinatorial libraries based on the concept of privileged substructures Methods Princ. Med. Chem. 23(Chemoinformatics in Drug Discovery), 287–313

    Google Scholar 

  37. Lowrie, J. F., Delisle, R. K., Hobbs, D. W., and Diller, D. J. (2004) The different strategies for designing GPCR and kinase targeted libraries Comb. Chem. High Throughput Screen. 7(5), 495–510

    Article  PubMed  CAS  Google Scholar 

  38. Prien, O. (2005) Target-family-oriented focused libraries for kinases-conceptual design aspects and commercial availability Chembiochem 6(3), 500–505

    Article  PubMed  CAS  Google Scholar 

  39. Stewart, E. L., Brown, P. J., Bentley, J. A., and Willson, T. M. (2001) Selection, application, and validation of a set of molecular descriptors for nuclear receptor ligands Abstracts of Papers, 222nd ACS National Meeting, Chicago, IL, United States, August 26–30, 2001, COMP-182

    Google Scholar 

  40. Lang, S. A., Kozyukov, A. V., Balakin, K. V., Skorenko, A. V., Ivashchenko, A. A., and Savchuk, N. P. (2003) Classification scheme for the design of serine protease targeted compound libraries J. Comput. Aided Mol. Des. 16(11), 803–807

    Article  Google Scholar 

  41. Schuffenhauer, A., Zimmermann, J., Stoop, R., Van der Vyver, J. -J., Lecchini, S., and Jacoby, E. (2002) An ontology for pharmaceutical ligands and its application for in silico screening and library design J. Chem. Inf. Comput. Sci. 42(4), 947–955

    Article  PubMed  CAS  Google Scholar 

  42. Aureus Pharmaceuticals, 174, Quai de Jemmapes, 75010 Paris, France

    Google Scholar 

  43. Jubilant Biosys, Ltd.,8575 Window Latch Way, Columbia, MD 21045

    Google Scholar 

  44. Sertanty Inc., 1735 N. First St. #102, San Jose CA, 95112

    Google Scholar 

  45. McGregor, M. J., and Muskal, S. M. (2000) Pharmacophore fingerprinting. 2. Application to primary library design J. Chem. Inf. Comput. Sci. 40(1), 117–125

    Article  PubMed  CAS  Google Scholar 

  46. Naumann, T., and Matter, H. (2002) Structural classification of protein kinases using 3D molecular interaction field analysis of their ligand binding sites: Target family landscapes J. Med. Chem. 45(12), 2366–2378

    Article  PubMed  CAS  Google Scholar 

  47. Rad, R., Mracec, M., Mracec, M., and Oprea, T. (2007) The privileged structures hypothesis for G protein-coupled receptors – Some preliminary results Rev. Roum. Chim. 52(8–9), 853–858

    CAS  Google Scholar 

  48. Klabunde, T., and Hessler, G. (2002) Drug design strategies for targeting G-protein-coupled receptors Chembiochem 3(10), 928–944

    Article  PubMed  CAS  Google Scholar 

  49. Gooding, O. W. (2004) Process optimization using combinatorial design principles: Parallel synthesis and design of experiment methods Curr. Opin. Chem. Biol. 8(3), 297–304

    Article  PubMed  CAS  Google Scholar 

  50. Debnath, A. K. (2001) Quantitative structure–activity relationship (QSAR), a versatile tool in drug design. In: Ghose, A. K. (ed). Combinatorial Library Design and Evaluation, Marcel Dekker, Inc, New York, New York

    Google Scholar 

  51. Oprea, T. I., Davis, A. M., Teague, S. J., and Leeson, P. D. (2001) Is there a difference between leads and drugs? A historical perspective J. Chem. Inf. Comput. Sci. 41(5), 1308–1315

    Article  PubMed  CAS  Google Scholar 

  52. Teague, S. J., Davis, A. M., Leeson, P. D., and Oprea, T. (1999) The design of leadlike combinatorial libraries Angew. Chem. Int. Ed. 38(24), 3743–3748

    Article  CAS  Google Scholar 

  53. Hansch, C., and Albert, L. (1995) Calculation of octanol-water partition coefficients by fragments. In: Heller, S. (ed). Exploring QSAR: Fundamentals and Applications in Chemistry and Biology, American Chemical Society, Washington, DC

    Google Scholar 

  54. Hansch, C., Hoekman, D., and Gao, H. (1996) Comparative QSAR: Toward a deeper understanding of chemicobiological interactions Chem. Rev. 96(3), 1045–1075

    Article  PubMed  CAS  Google Scholar 

  55. Oprea, T. I., Olah, M., Mracec, M., Rad, R., Ostopovici, L., Bora, A., Hadaruga, N., and Bologa, C. G. (2005) Mapping bioactivity space for fragment-based lead discovery Abstracts of Papers, 229th ACS National Meeting, San Diego, CA, United States, March 13–17, 2005, MEDI-277

    Google Scholar 

  56. Oprea, T. I. (2007) Lead-like, drug-like or “pub-like”: How different are they? Abstracts of Papers, 233rd ACS National Meeting, Chicago, IL, United States, March 25–29, 2007, CINF-014

    Google Scholar 

  57. Oprea, T. I. (2005) Pursuing leadlikeness in pharmaceutical research Jt. Meet. Med. Chem., Proc., Vienna, Austria, June 20–23, 2005, 1–4

    Google Scholar 

  58. Jaakola, V. -P., Griffith, M. T., Hanson, M. A., Cherezov, V., Chien, E. Y. T., Lane, J. R., Ijzerman, A. P., and Stevens, R. C. (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist Science 322(5905), 1211–1217

    Article  PubMed  CAS  Google Scholar 

  59. Scheerer, P., Park, J. H., Hildebrand, P. W., Kim, Y. J., Krauss, N., Choe, H. -W., Hofmann, K. P., and Ernst, O. P. (2008) Crystal structure of opsin in its G-protein-interacting conformation Nature 455(7212), 497–502

    Article  PubMed  CAS  Google Scholar 

  60. Warne, T., Serrano-Vega, M. J., Baker, J. G., Moukhametzianov, R., Edwards, P. C., Henderson, R., Leslie, A. G. W., Tate, C. G., and Schertler, G. F. X. (2008) Structure of a b1-adrenergic G-protein-coupled receptor Nature 454(7203), 486–491

    Article  PubMed  CAS  Google Scholar 

  61. Park, J. H., Scheerer, P., Hofmann, K. P., Choe, H. -W., and Ernst, O. P. (2008) Crystal structure of the ligand-free G-protein-coupled receptor opsin Nature 454(7201), 183–187

    Article  PubMed  CAS  Google Scholar 

  62. Cherezov, V., Rosenbaum, D. M., Hanson, M. A., Rasmussen, S. G. F., Thian, F. S., Kobilka, T. S., Choi, H. -J., Kuhn, P., Weis, W. I., Kobilka, B. K., Stevens, R. C., Takeda, S., Kadowaki, S., Haga, T., Takaesu, H., Mitaku, S., Fredriksson, R., Lagerstrom, M. C., Lundin, L. G., Schioth, H. B., Pierce, K. L., Premont, R. T., Lefkowitz, R. J., Lefkowitz, R. J., Shenoy, S. K., and Rosenbaum, D. M. (2007) High-resolution crystal structure of an engineered human b2-adrenergic G protein-coupled receptor Science 318(5854), 1258–1265

    Article  PubMed  CAS  Google Scholar 

  63. Rasmussen, S. G. F., Choi, H. -J., Rosenbaum, D. M., Kobilka, T. S., Thian, F. S., Edwards, P. C., Burghammer, M., Ratnala, V. R. P., Sanishvili, R., Fischetti, R. F., Schertler, G. F. X., Weis, W. I., and Kobilka, B. K. (2007) Crystal structure of the human b2 adrenergic G-protein-coupled receptor Nature 450(7168), 383–387

    Article  PubMed  CAS  Google Scholar 

  64. Worth, C. L., Kleinau, G., and Krause, G. (2009) Comparative sequence and structural analyses of G-protein-coupled receptor crystal structures and implications for molecular models PLoS One 4(9)

    Google Scholar 

  65. Mobarec, J. C., Sanchez, R., and Filizola, M. (2009) Modern homology modeling of g-protein coupled receptors: Which structural template to use? J. Med. Chem. 52(16), 5207–5216

    Article  PubMed  CAS  Google Scholar 

  66. Panigrahi, S. K., and Desiraju, G. R. (2003) Homology modelling in protein structure prediction: Epidermal growth factor receptor kinase domain Natl. Acad. Sci. Lett. 27(1 & 2), 1–11

    CAS  Google Scholar 

  67. Mahadevan, D., Bearss David, J., and Vankayalapati, H. (2003) Structure-based design of novel anti-cancer agents targeting aurora kinases Curr. Med. Chem. Anticancer Agents 3(1), 25–34

    Article  PubMed  CAS  Google Scholar 

  68. Mozzicafreddo, M., Cuccioloni, M., Cecarini, V., Eleuteri, A. M., and Angeletti, M. (2009) Homology modeling and docking analysis of the interaction between polyphenols and mammalian 20S proteasomes J. Chem. Inf. Model. 49(2), 401–409

    Article  PubMed  CAS  Google Scholar 

  69. Zhou, H., Singh, N. J., and Kim, K. S. (2006) Homology modeling and molecular dynamics study of West Nile virus NS3 protease: A molecular basis for the catalytic activity increased by the NS2B cofactor Proteins 65(3), 692–701

    Article  PubMed  CAS  Google Scholar 

  70. Majer, F., Pavlickova, L., Majer, P., Hradilek, M., Dolejsi, E., Hruskova-Heidingsfeldova, O., and Pichova, I. (2006) Structure-based specificity mapping of secreted aspartic proteases of Candida parapsilosis, Candida albicans, and Candida tropicalis using peptidomimetic inhibitors and homology modeling Biol. Chem. 387(9), 1247–1254

    Article  PubMed  CAS  Google Scholar 

  71. ClogP is available from Daylight Information Systems, Inc., 27401 Los Altos, Suite 360, Mission Viejo, CA, 92691

    Google Scholar 

  72. Carhart, R. E., Smith, D. H., and Venkataraghavan, R. (1985) Atom pairs as molecular features in structure–activity studies: Definition and applications J. Chem. Inf. Comput. Sci. 25(2), 64–73

    Article  CAS  Google Scholar 

  73. Daylight Information Systems, Inc., 27401 Los Altos, Suite 360, Mission Viejo, CA, 92691

    Google Scholar 

  74. McGregor, M. J., and Muskal, S. M. (1999) Pharmacophore fingerprinting. 1. Application to QSAR and focused library design J. Chem. Inf. Comput. Sci. 39(3), 569–574

    Article  PubMed  CAS  Google Scholar 

  75. Beno, B. R., and Mason, J. S. (2001) The design of combinatorial libraries using properties and 3D pharmacophore fingerprints Drug Discov. Today 6(5), 251–258

    Article  PubMed  CAS  Google Scholar 

  76. Pearlman, R. S., and Smith, K. M. (1998) Software for chemical diversity in the context of accelerated drug discovery Drugs Future 23(8), 885–895

    Article  CAS  Google Scholar 

  77. Pearlman, R. S., and Smith, K. M. (1999) Metric validation and the receptor-relevant subspace concept J. Chem. Inf. Comput. Sci. 39(1), 28–35

    Article  CAS  Google Scholar 

  78. Kubinyi, H. (2004) 2D QSAR models: Hansch and Free-Wilson analyses Comput. Med. Chem. Drug Discovery, 539–570

    Google Scholar 

  79. Topliss, J. G. (1993) Some observations on classical QSAR Perspect. Drug Discovery Des. 1(2), 253–268

    Article  CAS  Google Scholar 

  80. Martin, E. J., Blaney, J. M., Siani, M. A., Spellmeyer, D. C., Wong, A. K., and Moos, W. H. (1995) Measuring diversity: Experimental design of combinatorial libraries for drug discovery J. Med. Chem. 38(9), 1431–1436

    Article  PubMed  CAS  Google Scholar 

  81. Austel, V. (1995) Experimental design in synthesis planning and structure–property correlations. Experimental design Methods Princ. Med. Chem. 2, 49–62

    Article  CAS  Google Scholar 

  82. Brannigan, L. H., Grieshaber, M. V., and Schnur, D. M. (1995) Use experimental design in organic synthesis Chem. Tech. 25(3), 29–35

    CAS  Google Scholar 

  83. Rose, S., and Stevens, A. (2003) Computational design strategies for combinatorial libraries Curr. Opin. Chem. Biol. 7(3), 331–339

    Article  PubMed  CAS  Google Scholar 

  84. Mitchell, T., and Showell, G. A. (2001) Design strategies for building drug-like chemical libraries Curr. Opin. Drug Discov. Devel. 4(3), 314–318

    PubMed  CAS  Google Scholar 

  85. Gillet, V. J. (2002) Reactant- and product-based approaches to the design of combinatorial libraries J. Comput. Aided Mol. Des. 16(5/6), 371–380

    Article  PubMed  CAS  Google Scholar 

  86. Pearlman Robert, S. DiverseSolutions. Is available from Tripos, 1699 South Hanley Road, St. Louis, MO, 63144, http://www.tripos.com

  87. GLIDE and CombiGLIDE are modules of the MAESTRO software package available from Schrödinger LLC, 120 West 45th Street, 17th Floor, New York, NY 10036. http://www.schrodinger.com

  88. Pearlman Robert, S. Benchware (LibraryMaker/LibraryDesigner) was available from Tripos, 1699 South Hanley Road, St. Louis, MO, 63144, http://www.tripos.com

  89. Matter, H. (1997) Selecting optimally diverse compounds from structure databases: A validation study of two-dimensional and three-dimensional molecular descriptors J. Med. Chem. 40(8), 1219–1229

    Article  PubMed  CAS  Google Scholar 

  90. Zuccotto, F. (2003) Pharmacophore features distributions in different classes of compounds J. Chem. Inf. Comput. Sci. 43(5), 1542–1552

    Article  PubMed  CAS  Google Scholar 

  91. Hall, L. H., and Kier, L. B. (1990) Determination of topological equivalence in molecular graphs from the topological state Quant. Struct.-Act. Relat. 9(2), 115–131

    Article  CAS  Google Scholar 

  92. Hall, L. H., Mohney, B., and Kier, L. B. (1991) The electrotopological state: An atom index for QSAR Quant. Struct.-Act. Relat. 10(1), 43–51

    Article  CAS  Google Scholar 

  93. Hassan, M., Bielawski, J. P., Hempel, J. C., and Waldman, M. (1996) Optimization and visualization of molecular diversity of combinatorial libraries Mol. Divers. 2(1/2), 64–74

    Article  PubMed  CAS  Google Scholar 

  94. Cerius2 was available from Accelrys, Inc., 9685 Scranton Road, San Diego, CA 92121-3752, but has since been incorporated into Discovery Studio. http://accelrys.com

  95. Jamois, E. A., Lin, C. T., and Waldman, M. (2003) Design of focused and restrained subsets from extremely large virtual libraries J. Mol. Graph. Model. 22(2), 141–149

    Article  PubMed  CAS  Google Scholar 

  96. Brown, R. D., Hassan, M., and Waldman, M. (2004) Tools for designing diverse, druglike, cost-effective combinatorial libraries. In: Bajorath, J. (ed). Chemoinformatic: Concepts, Methods and Tools for Drug Discovery, first Ed., Humana Press, Totowa, NJ

    Google Scholar 

  97. Linusson, A., Gottfries, J., Olsson, T., Oernskov, E., Folestad, S., Norden, B., and Wold, S. (2001) Statistical molecular design, parallel synthesis, and biological evaluation of a library of thrombin inhibitors J. Med. Chem. 44(21), 3424–3439

    Article  PubMed  CAS  Google Scholar 

  98. MODDE is available form Umetrics, Inc., Kinnelon, N. J., Kinnelon, N. J. http://www.umetrics.com/

  99. Lee, A., and Breitenbucher, J. G. (2003) The impact of combinatorial chemistry on drug discovery Curr. Opin. Drug Discov. Devel. 6(4), 494–508

    PubMed  CAS  Google Scholar 

  100. Skiles, J. W., Gonnella, N. C., and Jeng, A. Y. (2001) The design, structure, and therapeutic application of matrix metalloproteinase inhibitors Curr. Med. Chem. 8(4), 425–474

    Article  PubMed  CAS  Google Scholar 

  101. Pauls, H. W., and Ewing, W. R. (2001) The design of competitive, small-molecule inhibitors of coagulation factor Xa. Curr. Top. Med. Chem. 1(2), 83–100

    Article  PubMed  CAS  Google Scholar 

  102. Pearlman, R. S., and Smith, K. M. (1998) Novel metrics and validation of metrics for chemical diversity Alfred Benzon Symp. 42(Rational Molecular Design in Drug Research), 165–185

    Google Scholar 

  103. Pearlman, R. S., and Smith, K. M. (1999) Novel algorithms for the design of diverse and focussed combinatorial libraries Book of Abstracts, 217th ACS National Meeting, Anaheim, Calif., March 21–25, COMP-197

    Google Scholar 

  104. Wang, X. -C., and Saunders, J. (2001) GPCR library design Abstracts of Papers, 222nd ACS National Meeting, Chicago, IL, United States, August 26–30, 200, MEDI-012

    Google Scholar 

  105. Mason, J. S., and Beno, B. R. (2000) Library design using BCUT chemistry-space descriptors and multiple four-point pharmacophore fingerprints: Simultaneous optimization and structure-based diversity J. Mol. Graph. Model. 18(4/5), 438–451

    Article  PubMed  CAS  Google Scholar 

  106. Pirard, B., and Pickett, S. D. (2000) Classification of kinase inhibitors using BCUT descriptors J. Chem. Inf. Comput. Sci. 40(6), 1431–1440

    Article  PubMed  CAS  Google Scholar 

  107. Manallack, D. T., Pitt, W. R., Gancia, E., Montana, J. G., Livingstone, D. J., Ford, M. G., and Whitley, D. C. (2002) Selecting screening candidates for kinase and G protein-coupled receptor targets using neural networks J. Chem. Inf. Comput. Sci. 42(5), 1256–1262

    Article  PubMed  CAS  Google Scholar 

  108. Mason, J. S., Good, A. C., and Martin, E. J. (2001) 3-D pharmacophores in drug discovery Curr. Pharm. Des. 7(7), 567–597

    Article  PubMed  CAS  Google Scholar 

  109. Good, A. C., Cho, S. -J., and Mason, J. S. (2004) Descriptors you can count on? Normalized and filtered pharmacophore descriptors for virtual screening J. Comput. Aided Mol. Des. 18(7–9), 523–527

    Article  PubMed  CAS  Google Scholar 

  110. Bradley, E. K., Beroza, P., Penzotti, J. E., Grootenhuis, P. D. J., Spellmeyer, D. C., and Miller, J. L. (2000) A rapid computational method for lead evolution: Description and application to a1-adrenergic antagonists J. Med. Chem. 43(14), 2770–2774

    Article  PubMed  CAS  Google Scholar 

  111. Lanctot, J. K., Putta, S., Lemmen, C., and Greene, J. (2003) Using ensembles to classify compounds for drug discovery J. Chem. Inf. Comput. Sci. 43(6), 2163–2169

    Article  PubMed  CAS  Google Scholar 

  112. Willett, P., Barnard, J. M., and Downs, G. M. (1998) Chemical similarity searching J. Chem. Inf. Comput. Sci. 38(6), 983–996

    Article  CAS  Google Scholar 

  113. Lanctot, J. K., Srinivasan, J., Lamb, M. L., Lemmen, C., Eksterowicz, J. E., and Putta, S. (2003) Mitigating the sensitivity of pharmacophoric fingerprints Abstracts of Papers, 225th ACS National Meeting, New Orleans, LA, United States, March 23–27, 2003, COMP-323

    Google Scholar 

  114. Pickett, S. D., McLay, I. M., and Clark, D. E. (2000) Enhancing the hit-to-lead properties of lead optimization libraries J. Chem. Inf. Comput. Sci. 40(2), 263–272

    Article  PubMed  CAS  Google Scholar 

  115. Zuckermann, R. N., Martin, E. J., Spellmeyer, D. C., Stauber, G. B., Shoemaker, K. R., Kerr, J. M., Figliozzi, G. M., Goff, D. A., Siani, M. A., Simon, R., Banville, S. C., Brown, E. G., Wang, L., Richter, L. S., and Moos, W. H. (1994) Discovery of nanomolar ligands for 7-transmembrane G-protein-coupled receptors from a diverse N-(substituted)glycine peptoid library J. Med. Chem. 37(17), 2678–2685

    Article  PubMed  CAS  Google Scholar 

  116. Bradley, E. K., Miller, J. L., Saiah, E., and Grootenhuis, P. D. J. (2003) Informative library design as an efficient strategy to identify and optimize leads: Application to cyclin-dependent kinase 2 antagonists J. Med. Chem. 46(20), 4360–4364

    Article  PubMed  CAS  Google Scholar 

  117. Deanda, F., Stewart, E. L., Reno, M. J., and Drewry, D. H. (2008) Kinase-targeted library design through the application of the Pharmprint methodology J. Chem. Inf. Model. 48(12), 2395–2403

    Article  PubMed  CAS  Google Scholar 

  118. Deanda, F., and Stewart, E. L. (2004) Application of the PharmPrint methodology to two protein kinases J. Chem. Inf. Comput. Sci. 44(5), 1803–1809

    Article  PubMed  CAS  Google Scholar 

  119. Mason, J. S., and Cheney, D. L. (1999) Ligand-receptor 3-D similarity studies using multiple 4-point pharmacophores Pac. Symp. Biocomput. ‘99, Mauna Lani, Hawaii, Jan. 4–9, 1999, 456–467

    Google Scholar 

  120. Murray, C. M., and Cato, S. J. (1999) Design of libraries to explore receptor sites J. Chem. Inf. Comput. Sci. 39(1), 46–50

    Article  PubMed  CAS  Google Scholar 

  121. Arnold, J. R., Burdick, K. W., Pegg, S. C. H., Toba, S., Lamb, M. L., and Kuntz, I. D. (2004) SitePrint: Three-dimensional pharmacophore descriptors derived from protein binding sites for family based active site analysis, classification, and drug design J. Chem. Inf. Comput. Sci. 44(6), 2190–2198

    Article  PubMed  CAS  Google Scholar 

  122. Baroni, M., Cruciani, G., Sciabola, S., Perruccio, F., and Mason, J. S. (2007) A common reference framework for analyzing/comparing proteins and ligands. Fingerprints for ligands and proteins (FLAP): Theory and application J. Chem. Inf. Model. 47(2), 279–294

    Article  PubMed  CAS  Google Scholar 

  123. Lamb, M. L., Bradley, E. K., Spellmeyer, D. C., Suto, M. J., and Grootenhuis, P. D. J. (2001) Iterative design of gene-family directed screening libraries Abstracts of Papers, 222nd ACS National Meeting, Chicago, IL, United States, August 26–30, 2001, COMP-053

    Google Scholar 

  124. Grootenhuis, P. D. J., Lamb, M. L., Bradley, E. K., Myers, P. L., Shirley, W. A., Rogers, D., Castellino, A. J., and Miller, J. L. (2003) Process for the informative and iterative design of a gene-family screening library. In: (Deltagen Research Laboratories, L.L.C., USA). Application: WO

    Google Scholar 

  125. Ugi, I., and Steinbrucker, C. (1961) Isonitriles. II. Reaction of isonitriles with carbonyl compounds, amines, and hydrazoic acid Chem. Ber. 94, 734–742

    Article  CAS  Google Scholar 

  126. Formerly MDL Drug Data Report, MDDR is produced by Symyx and Prous Science. http://www.symyx.com/products/databases/bioactivity/mddr

  127. Good, A. C., and Lewis, R. A. (1997) New methodology for profiling combinatorial libraries and screening sets: Cleaning up the design process with HARPick J. Med. Chem. 40(24), 3926–3936

    Article  PubMed  CAS  Google Scholar 

  128. Penzotti, J. E., Lamb, M. L., Evensen, E., and Grootenhuis, P. D. J. (2002) A computational ensemble pharmacophore model for identifying substrates of P-glycoprotein J. Med. Chem. 45(9), 1737–1740

    Article  PubMed  CAS  Google Scholar 

  129. Ekins, S., Bravi, G., Binkley, S., Gillespie, J. S., Ring, B. J., Wikel, J. H., and Wrighton, S. A. (1999) Three- and four-dimensional quantitative structure activity relationship analyses of cytochrome P-450 3A4 inhibitors J. Pharmacol. Exp. Ther. 290(1), 429–438

    PubMed  CAS  Google Scholar 

  130. Ekins, S., Bravi, G., Wikel, J. H., and Wrighton, S. A. (1999) Three-dimensional-quantitative structure activity relationship analysis of cytochrome P-450 3A4 substrates J. Pharmacol. Exp. Ther. 291(1), 424–433

    PubMed  CAS  Google Scholar 

  131. Sciabola, S., Morao, I., and de Groot, M. J. (2007) Pharmacophoric fingerprint method (TOPP) for 3D-QSAR modeling: Application to CYP2D6 metabolic stability J. Chem. Inf. Model. 47(1), 76–84

    Article  PubMed  CAS  Google Scholar 

  132. Johnson, S. R., Yue, H., Conder, M. L., Shi, H., Doweyko, A. M., Lloyd, J., and Levesque, P. (2007) Estimation of hERG inhibition of drug candidates using multivariate property and pharmacophore SAR Bioorg. Med. Chem. 15(18), 6182–6192

    Article  PubMed  CAS  Google Scholar 

  133. Brady, G. P., and Yang, Z. P. (2008) Pharmacophore fingerprints and application to target class modeling Abstracts of Papers, 235th ACS National Meeting, New Orleans, LA, United States, April 6–10, 2008, COMP-093

    Google Scholar 

  134. Yang, Z., and Brady, G. P. (2008) Applications of target class pharmacophore fingerprint modeling and multi-objective genetic algorithm optimization to large-scale combinatorial library design for corporate compound collection enhancement Abstracts of Papers, 235th ACS National Meeting, New Orleans, LA, United States, April 6–10, 2008, 2008, COMP-094

    Google Scholar 

  135. Bemis, G. W., and Murcko, M. A. (1996) The properties of known drugs. 1. Molecular frameworks J. Med. Chem. 39(15), 2887–2893

    Article  PubMed  CAS  Google Scholar 

  136. Mason, J. S., Cheney, D. L., Menard, P. R., and Morize, I. (1997) New pharmacophore-based methods to search, profile and design diverse and biased compound databases and libraries Book of Abstracts, 214th ACS National Meeting, Las Vegas, NV, September 7–11, COMP-034

    Google Scholar 

  137. Classpharmer is available from Simulations Plus, 42505 10th Street West Lancaster, CA 93534-7059, http://www.simulations-plus.com/

  138. Schnur, D. M., Hermsmeier, M. A., and Tebben, A. J. (2006) Are target-family-privileged substructures truly privileged? J. Med. Chem. 49(6), 2000–2009

    Article  PubMed  CAS  Google Scholar 

  139. Schnur, D., and Hermsmeier, M. A. (2004) Classpharmer and the quest for privileged substructures Abstracts of Papers, 228th ACS National Meeting, Philadelphia, PA, United States, August 22–26, 2004, CINF-080

    Google Scholar 

  140. PipelinePilot is available from Accelrys, Inc., 9685 Scranton Road, San Diego, CA 92121-3752., http://accelrys.com/

  141. ISIS is available from Symyx, http://www.symyx.com/products/software. ISIS was formly available from MDL. ISIS keys and MACCS keys are equivalent

  142. Gianti, E., and Sartori, L. (2008) Identification and selection of “privileged fragments” suitable for primary screening J. Chem. Inf. Model. 48(11), 2129–2139

    Article  PubMed  CAS  Google Scholar 

  143. Horton, D. A., Bourne, G. T., and Smythe, M. L. (2003) The combinatorial synthesis of bicyclic privileged structures or privileged substructures Chem. Rev. 103(3), 893–930

    Article  PubMed  CAS  Google Scholar 

  144. Bleicher, K. H., Green, L. G., Martin, R. E., and Rogers-Evans, M. (2004) Ligand identification for G-protein-coupled receptors: A lead generation perspective Curr. Opin. Chem. Biol. 8(3), 287–296

    Article  PubMed  CAS  Google Scholar 

  145. Merlot, C., Domine, D., Cleva, C., and Church, D. J. (2003) Chemical substructures in drug discovery Drug Discov. Today 8(13), 594–602

    Article  PubMed  CAS  Google Scholar 

  146. Formerly MDL Drug Data Report, MDDR is currently produced by Symyx and Prous Science. The 1999 version was available from MDL which was later purchased by Elsevier and subsequently sold to Symyx

    Google Scholar 

  147. Tripos, 1699 South Hanley Road, St. Louis, MO, 63144

    Google Scholar 

  148. Vaz, R. Private communication

    Google Scholar 

  149. Severinsen, R., Bourne, G. T., Tran, T. T., Ankersen, M., Begtrup, M., and Smythe, M. L. (2008) Library of biphenyl privileged substructures using a safety-catch linker approach J. Comb. Chem. 10(4), 557–566

    Article  PubMed  CAS  Google Scholar 

  150. Bondensgaard, K., Ankersen, M., Thogersen, H., Hansen, B. S., Wulff, B. S., and Bywater, R. P. (2004) Recognition of privileged structures by g-protein coupled receptors J. Med. Chem. 47(4), 888–899

    Article  PubMed  CAS  Google Scholar 

  151. Jimonet, P., and Jaeger, R. (2004) Strategies for designing GPCR-focused libraries and screening sets Curr. Opin. Drug Discov. Devel. 7(3), 325–333

    PubMed  CAS  Google Scholar 

  152. Rodrigues de Sa Alves, F., Barreiro, E. J., and Fraga, C. A. M. (2009) From nature to drug discovery: The indole scaffold as a ‘privileged structure’ Mini Rev. Med. Chem. 9(7), 782–793

    Article  Google Scholar 

  153. Lewis, R. A. (2008) Computer-aided drug design 2005–2007 Chem. Modell. 5, 51–66

    Article  CAS  Google Scholar 

  154. Lang, P. T., Aynechi, T., Moustakas, D., Shoichet, B., Kuntz, I. D., Brooijmans, N., and Oshiro, C. M. (2007) Molecular docking and structure-based design Drug Discovery Res. 3–23

    Google Scholar 

  155. Abraham, D. J. (2006) Structure-based drug design – A historical perspective and the future Compr. Med. Chem. II 4, 65–86

    Google Scholar 

  156. Lange, G. (2006) Structure-based drug design – The use of protein structure in drug discovery Compr. Med. Chem. II 4, 597–650

    Google Scholar 

  157. Sun, Y., Ewing, T. J. A., Skillman, A. G., and Kuntz, I. D. (1998) CombiDOCK: Structure-based combinatorial docking and library design J. Comput. Aided Mol. Des. 12(6), 597–604

    Article  PubMed  CAS  Google Scholar 

  158. Shoichet, B. K., Bodian, D. L., and Kuntz, I. D. (1992) Molecular docking using shape descriptors J. Comput. Chem. 13(3), 380–397

    Article  CAS  Google Scholar 

  159. Geistlinger, T. R., and Guy, R. K. (2003) Novel selective inhibitors of the interaction of individual nuclear hormone receptors with a mutually shared steroid receptor coactivator 2 J. Am. Chem. Soc. 125(23), 6852–6853

    Article  PubMed  CAS  Google Scholar 

  160. Pitts, W. J., Guo, J., Dhar, T. G. M., Shen, Z., Gu, H. H., Watterson, S. H., Bednarz, M. S., Chen, B. -C., Barrish, J. C., Bassolino, D., Cheney, D., Fleener, C. A., Rouleau, K. A., Hollenbaugh, D. L., and Iwanowicz, E. J. (2002) Rapid synthesis of triazine inhibitors of inosine monophosphate dehydrogenase Bioorg. Med. Chem. Lett. 12(16), 2137–2140

    Article  PubMed  CAS  Google Scholar 

  161. Sprous, D. G., Lowis, D. R., Leonard, J. M., Heritage, T., Burkett, S. N., Baker, D. S., and Clark, R. D. (2004) OptiDock: Virtual HTS of combinatorial libraries by efficient sampling of binding modes in product space J. Comb. Chem. 6(4), 530–539

    Article  PubMed  CAS  Google Scholar 

  162. Shelley, M., Frye, L. L., Sherman, B. W., Rao, S. N., Beard, H., Mozziconacci, J.-C., and Shenkin, P. S. (2007) New approach to lead optimization and core hopping Abstracts of Papers, 234th ACS National Meeting, Boston, MA, United States, August 19–23, 2007, COMP-406

    Google Scholar 

  163. Sherman, B. W., Higgs, C., and Shelley, M. (2007) Screening very large virtual libraries using structure-based docking Abstracts of Papers, 234th ACS National Meeting, Boston, MA, United States, August 19–23, 2007, COMP-165

    Google Scholar 

  164. Shelley, M., Frye, L. L., Murphy, R. B., and Shenkin, P. S. (2006) Focused library design for selective estrogen receptor modulators using CombiGlide Abstracts of Papers, 232nd ACS National Meeting, San Francisco, CA, United States, Sept. 10–14, 2006, COMP-040

    Google Scholar 

  165. Shenkin, P. S., Frye, L. L., Murphy, R. B., Repasky, M. P., Mainz, D. T., Reboul, M., and Friesner, R. A. (2005) Structure-based design of focused drug-like combinatorial libraries Abstracts of Papers, 230th ACS National Meeting, Washington, DC, United States, Aug. 28–Sept. 1, 2005, COMP-117

    Google Scholar 

  166. Rarey, M., and Lengauer, T. (2000) A recursive algorithm for efficient combinatorial library docking Perspect. Drug Discov. Des. 20, 63–81

    Article  CAS  Google Scholar 

  167. Rarey, M., Kramer, B., Lengauer, T., and Klebe, G. (1996) A fast flexible docking method using an incremental construction algorithm J. Mol. Biol. 261(3), 470–489

    Article  PubMed  CAS  Google Scholar 

  168. Rarey, M., Wefing, S., and Lengauer, T. (1996) Placement of medium-sized molecular fragments into active sites of proteins J. Comput. Aided Mol. Des. 10(1), 41–54

    Article  PubMed  CAS  Google Scholar 

  169. Luksch, T., Chan, N. -S., Brass, S., Sotriffer, C. A., Klebe, G., and Diederich, W. E. (2008) Computer-aided design and synthesis of nonpeptidic plasmepsin II and IV inhibitors ChemMedChem 3(9), 1323–1336

    Article  PubMed  CAS  Google Scholar 

  170. Gerlach, C., Sohn, C., Craan, T., Diederich, W. E., and Klebe, G. (2006) KNOBLE: KNOwledge-based ligand enumeration Abstracts of Papers, 232nd ACS National Meeting, San Francisco, CA, United States, Sept. 10–14, 2006, COMP-246

    Google Scholar 

  171. Diederich, W. E., Gerlach, C., Blum, A., Boettcher, J., Brass, S., Luksch, T., and Klebe, G. (2006) Design and synthesis of tailor-made compound libraries via a knowledge-based approach: A case study Abstracts of Papers, 232nd ACS National Meeting, San Francisco, CA, United States, Sept. 10–14, 2006, CINF-083

    Google Scholar 

  172. Cross, S. S. J. (2005) Improved FlexX docking using FlexS-determined base fragment placement J. Chem. Inf. Model. 45(4), 993–1001

    Article  PubMed  CAS  Google Scholar 

  173. Sprous, D., Clark, R., Lowis, D., Leonard, J., and Heritage, T. (2001) Docking combinatorial libraries efficiently using FlexX Abstracts of Papers, 222nd ACS National Meeting, Chicago, IL, United States, August 26–30, 2001, COMP-033

    Google Scholar 

  174. Soltanshahi, F., Liu, Q., and Clark, R. D. (2006) Biasing for favored substituents in kinase library design Abstracts of Papers, 231st ACS National Meeting, Atlanta, GA, United States, March 26–30, 2006, COMP-054

    Google Scholar 

  175. Schrödinger, https://www.schrodinger.com/Documentation.php?mID=6&sID=24&cID=2150&pdID=2150. In: CombiGLIDE documentation, SchrödingerLLC, 120 West 45th Street, 17th Floor, New York, NY 10036

  176. Zhou, J. Z. (2008) Structure-directed combinatorial library design Curr. Opin. Chem. Biol. 12(3), 379–385

    Article  PubMed  CAS  Google Scholar 

  177. Kolb, P., Kipouros, C. B., Huang, D., and Caflisch, A. (2008) Structure-based tailoring of compound libraries for high-throughput screening: Discovery of novel EphB4 kinase inhibitors. Proteins 73(1), 11–18

    Article  PubMed  CAS  Google Scholar 

  178. He, L., Zhang, L., Liu, X., Li, X., Zheng, M., Li, H., Yu, K., Chen, K., Shen, X., Jiang, H., and Liu, H. (2009) Discovering potent inhibitors against the β-hydroxyacyl-acyl carrier protein dehydratase (FabZ) of Helicobacter pylori: Structure-based design, synthesis, bioassay, and crystal structure determination J. Med. Chem. 52(8), 2465–2481

    Article  PubMed  CAS  Google Scholar 

  179. Chen, G., Zheng, S., Luo, X., Shen, J., Zhu, W., Liu, H., Gui, C., Zhang, J., Zheng, M., Puah, C. M., Chen, K., and Jiang, H. (2005) Focused combinatorial library design based on structural diversity, druglikeness and binding affinity score J. Comb. Chem. 7(3), 398–406

    Article  PubMed  CAS  Google Scholar 

  180. Hardcastle, I. R., Ahmed, S. U., Atkins, H., Farnie, G., Golding, B. T., Griffin, R. J., Guyenne, S., Hutton, C., Kaellblad, P., Kemp, S. J., Kitching, M. S., Newell, D. R., Norbedo, S., Northen, J. S., Reid, R. J., Saravanan, K., Willems, H. M. G., and Lunec, J. (2006) Small-molecule inhibitors of the MDM2-p53 protein-protein interaction based on an isoindolinone scaffold J. Med. Chem. 49(21), 6209–6221

    Article  PubMed  CAS  Google Scholar 

  181. Stahl, M., Todorov, N. P., James, T., Mauser, H., Boehm, H. -J., and Dean, P. M. (2002) A validation study on the practical use of automated de novo design J. Comput. Aided Mol. Des. 16(7), 459–478

    Article  PubMed  CAS  Google Scholar 

  182. Carr, R., and Jhoti, H. (2002) Structure-based screening of low-affinity compounds Drug Discov. Today 7(9), 522–527

    Article  PubMed  CAS  Google Scholar 

  183. Hajduk, P. J. (2006) Fragment-based drug design: How big is too big? J. Med. Chem. 49(24), 6972–6976

    Article  PubMed  CAS  Google Scholar 

  184. Hajduk, P. J., and Greer, J. (2007) A decade of fragment-based drug design: Strategic advances and lessons learned Nat. Rev. Drug Discov. 6(3), 211–219

    Article  PubMed  CAS  Google Scholar 

  185. Lipinski, C. A., Lombardo, F., Dominy, B. W., and Feeney, P. J. (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings Adv. Drug Deliv. Rev. 46(1–3), 3–26

    Article  PubMed  CAS  Google Scholar 

  186. Congreve, M., Carr, R., Murray, C., and Jhoti, H. (2003) A ‘rule of three’ for fragment-based lead discovery? Drug Discov. Today 8(19), 876–877

    Article  PubMed  Google Scholar 

  187. Xu, J. (2002) A new approach to finding natural chemical structure classes J. Med. Chem. 45(24), 5311–5320

    Article  PubMed  CAS  Google Scholar 

  188. Siegal, G., Ab, E., and Schultz, J. (2007) Integration of fragment screening and library design Drug Discov. Today 12(23 & 24), 1032–1039

    Article  PubMed  CAS  Google Scholar 

  189. Shuker, S. B., Hajduk, P. J., Meadows, R. P., and Fesik, S. W. (1996) Discovering high-affinity ligands for proteins: SAR by NMR Science 274(5292), 1531–1534

    Article  PubMed  CAS  Google Scholar 

  190. Mayer, M., and Meyer, B. (1999) Characterization of ligand binding by saturation transfer difference NMR spectroscopy Angew. Chem., Int. Ed. 38(12), 1784–1788

    Article  CAS  Google Scholar 

  191. Dalvit, C., Pevarello, P., Tato, M., Veronesi, M., Vulpetti, A., and Sundstrom, M. (2000) Identification of compounds with binding affinity to proteins via magnetization transfer from bulk water J. Biomol. NMR 18(1), 65–68

    Article  PubMed  CAS  Google Scholar 

  192. Vanwetswinkel, S., Heetebrij, R. J., van Duynhoven, J., Hollander, J. G., Filippov, D. V., Hajduk, P. J., and Siegal, G. (2005) TINS, target immobilized NMR screening: An efficient and sensitive method for ligand discovery Chem. Biol. 12(2), 207–216

    Article  PubMed  CAS  Google Scholar 

  193. Phillips, K. S., and Cheng, Q. (2007) Recent advances in surface plasmon resonance based techniques for bioanalysis Anal. Bioanal. Chem. 387(5), 1831–1840

    Article  PubMed  CAS  Google Scholar 

  194. Rich, R. L., and Myszka, D. G. (2000) Advances in surface plasmon resonance biosensor analysis Curr. Opin. Biotechnol. 11(1), 54–61

    Article  PubMed  CAS  Google Scholar 

  195. Neumann, T., Junker, H. D., Schmidt, K., and Sekul, R. (2007) SPR-based fragment screening: Advantages and applications Curr. Top. Med. Chem. 7(16), 1630–1642

    Article  PubMed  CAS  Google Scholar 

  196. Graffinity, http://www.graffinity.com

  197. Carr, R. A. E., Congreve, M., Murray, C. W., and Rees, D. C. (2005) Fragment-based lead discovery: Leads by design Drug Discov. Today 10(14), 987–992

    Article  PubMed  CAS  Google Scholar 

  198. Law, R., Barker, O., Barker, J. J., Hesterkamp, T., Godemann, R., Andersen, O., Fryatt, T., Courtney, S., Hallett, D., and Whittaker, M. (2009) The multiple roles of computational chemistry in fragment-based drug design J. Comput. Aided Mol. Des. 23(8), 459–473

    Article  PubMed  CAS  Google Scholar 

  199. Petros, A. M., Dinges, J., Augeri, D. J., Baumeister, S. A., Betebenner, D. A., Bures, M. G., Elmore, S. W., Hajduk, P. J., Joseph, M. K., Landis, S. K., Nettesheim, D. G., Rosenberg, S. H., Shen, W., Thomas, S., Wang, X., Zanze, I., Zhang, H., and Fesik, S. W. (2006) Discovery of a potent inhibitor of the antiapoptotic protein Bcl-xL from NMR and parallel synthesis, J. Med. Chem. 49, 656–663

    Article  PubMed  CAS  Google Scholar 

  200. Dolle, R. E. (1997) Comprehensive survey of chemical libraries yielding enzyme inhibitors, receptor agonists and antagonists, and other biologically active agents: 1992 through 1997 Mol Divers. 3(4), 199–233

    Article  PubMed  CAS  Google Scholar 

  201. Dolle, R. E. (1998) Comprehensive survey of combinatorial libraries with undisclosed biological activity: 1992–1997. Mol. Divers. 4(4), 233–256

    Article  PubMed  CAS  Google Scholar 

  202. Dolle, R. E. (2000) Comprehensive survey of combinatorial library synthesis: 1999 J. Comb. Chem. 2(5), 383–433

    Article  PubMed  CAS  Google Scholar 

  203. Dolle, R. E. (2000) Comprehensive survey of combinatorial libraries with undisclosed biological activity: 1992–1997 Mol. Divers. 4(4), 233–256

    Article  Google Scholar 

  204. Dolle, R. E. (2001) Comprehensive survey of combinatorial library synthesis: 2000 J. Comb. Chem. 3(6), 477–517

    Article  PubMed  CAS  Google Scholar 

  205. Dolle, R. E. (2002) Comprehensive survey of combinatorial library synthesis: 2001 J. Comb. Chem. 4(5), 369–418

    Article  PubMed  CAS  Google Scholar 

  206. Dolle, R. E. (2003) Comprehensive survey of combinatorial library synthesis: 2002 J. Comb. Chem. 5(6), 693–753

    Article  PubMed  CAS  Google Scholar 

  207. Dolle, R. E. (2004) Comprehensive survey of combinatorial library synthesis: 2003 J. Comb. Chem. 6(5), 623–679

    Article  PubMed  CAS  Google Scholar 

  208. Dolle, R. E. (2005) Comprehensive survey of combinatorial library synthesis: 2004 J. Comb. Chem. 7(6), 739–798

    Article  PubMed  CAS  Google Scholar 

  209. Dolle, R. E., Le Bourdonnec, B., Goodman, A. J., Morales, G. A., Salvino, J. M., and Zhang, W. (2007) Comprehensive survey of chemical libraries for drug discovery and chemical biology: 2006 J. Comb. Chem. 9(6), 855–902

    Article  PubMed  CAS  Google Scholar 

  210. Dolle, R. E., and Nelson, K. H., Jr. (1999) Comprehensive survey of combinatorial library synthesis: 1998 J. Comb. Chem. 1(4), 235–282

    Article  PubMed  CAS  Google Scholar 

  211. Fitzgerald, S. H., Sabat, M., and Geysen, H. M. (2006) Diversity space and its application to library selection and design J. Chem. Inf. Model. 46(4), 1588–1597

    Article  PubMed  CAS  Google Scholar 

  212. Rush, T. S., III, Grant, J. A., Mosyak, L., and Nicholls, A. (2005) A shape-based 3-D scaffold hopping method and its application to a bacterial protein–protein interaction J. Med. Chem. 48(5), 1489–1495

    Article  PubMed  CAS  Google Scholar 

  213. Fitzgerald, S. H., Sabat, M., and Geysen, H. M. (2007) Survey of the diversity space coverage of reported combinatorial libraries J. Comb. Chem. 9(4), 724–734

    Article  PubMed  CAS  Google Scholar 

  214. Bergmann, R., Linusson, A., and Zamora, I. (2007) SHOP: Scaffold HOPping by GRID-based similarity searches J. Med. Chem. 50(11), 2708–2717

    Article  PubMed  CAS  Google Scholar 

  215. Lead Molecular Design, S.L., Avinguda Cerdanyola 92-94 Local 1.3, 08173 Sant Cugat del Valles, Spain

    Google Scholar 

  216. Molecular Discovery Ltd., 215 Marsh Road,1st Floor, HA55NE, Pinner, Middlesex, UK, http://www.moldiscovery.com

  217. Goodford, P. J. (1985) A computational procedure for determining energetically favorable binding sites on biologically important macromolecules J. Med. Chem. 28(7), 849–857

    Article  PubMed  CAS  Google Scholar 

  218. Fontaine, F., Pastor, M., Zamora, I., and Sanz, F. (2005) Anchor-GRIND: Filling the gap between standard 3D QSAR and the GRid-INdependent descriptors J. Med. Chem. 48(7), 2687–2694

    Article  PubMed  CAS  Google Scholar 

  219. Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., and Shenkin, P. S. (2004) Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy J. Med. Chem. 47(7), 1739–1749

    Article  PubMed  CAS  Google Scholar 

  220. Zamora, I. Private communication

    Google Scholar 

  221. Perruccio, F., Mason, J. S., Sciabola, S., and Baroni, M. (2006) FLAP: 4-point pharmacophore fingerprints from GRID Methods Princ. Med. Chem. 27(Molecular Interaction Fields), 83–102

    Google Scholar 

  222. Sayle, R., and Nicholls, A. (2006) Electrostatic evaluation of isosteric analogues J. Comput. Aided Mol. Des. 20(4), 191–208

    Article  PubMed  CAS  Google Scholar 

  223. Jennings, A., and Tennant, M. (2007) Selection of molecules based on shape and electrostatic similarity: Proof of concept of “Electroforms” J. Chem. Inf. Model. 47(5), 1829–1838

    Article  PubMed  CAS  Google Scholar 

  224. Maybridge databases, http://www.maybridge.com/

  225. Good, A. C. (2007) Novel DOCK clique driven 3D similarity database search tools for molecule shape matching and beyond: Adding flexibility to the search for ligand kin J. Mol. Graph. Model. 26(3), 656–666

    Article  PubMed  CAS  Google Scholar 

  226. Cramer, R. D., Cruz, P., Stahl, G., Curtiss, W. C., Campbell, B., Masek, B. B., and Soltanshahi, F. (2008) Virtual screening for R-Groups, including predicted pIC50 contributions, within large structural databases, using Topomer CoMFA J. Chem. Inf. Model. 48(11), 2180–2195

    Article  PubMed  CAS  Google Scholar 

  227. Truchon, J. -F., and Bayly, C. I. (2006) Is there a single ‘best pool’ of commercial reagents to use in combinatorial library design to conform to a desired product-property profile? Aust. J. Chem. 59(12), 879–882

    Article  CAS  Google Scholar 

  228. Truchon, J. -F., and Bayly, C. I. (2006) GLARE: A new approach for filtering large reagent lists in combinatorial library design using product properties J. Chem. Inf. Model. 46(4), 1536–1548

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Schnur, D.M., Beno, B.R., Tebben, A.J., Cavallaro, C. (2010). Methods for Combinatorial and Parallel Library Design. In: Bajorath, J. (eds) Chemoinformatics and Computational Chemical Biology. Methods in Molecular Biology, vol 672. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-839-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-839-3_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-838-6

  • Online ISBN: 978-1-60761-839-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics