Skip to main content

Umbilical Cord Blood Stem Cells for Myocardial Repair and Regeneration

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 660))

Abstract

Cardiovascular disease remains a major cause of morbidity and mortality with substantial economic cost. There remains a need for therapeutic improvement for patients refractory to revascularization and those who redevelop occlusions following revascularization. Early evidence linked age-associated reductions in the levels of circulating marrow-derived hematopoietic stem cells (HSC), characterized by expression of early HSC markers CD133 and CD34, with the occurrence of cardiovascular events and associated death. Heart tissue has the endogenous ability to regenerate through the activation of resident cardiac stem cells or through recruitment of a stem cell population from other tissues, such as bone marrow. A number of clinical trials have utilized patient-derived autologous bone marrow-derived cells or whole BM uncultured mononuclear cells (MNC) infused or injected locally to augment angiogenesis. In most cases of treating animal models with human cells, the frequency of stem cell engraftment, the subsequent number of newly generated cardiomyocytes and vascular cells, and the augmentation of endogenous microvascular collateralization, either by deposition, transdifferentiation, and/or by cell fusion, appear to be too low to explain the significant cardiac improvement. Initially, it was hypothesized that cell therapy may work by cell replacement mechanisms, but recent evidence suggests alternatively that cell therapy works by providing trophic support to the injured tissues. An alternative hypothesis is that the transplanted stem cells release soluble cytokines and growth factors (i.e., paracrine factors) that function in a paracrine fashion, contributing to cardiac repair and regeneration by inducing cytoprotection and neovascularization. Another hypothesis which may also be operative is that cell therapy may mediate endogenous regeneration by the activation of resident cardiac stem cell. Well-established clinical trials have used cord blood for the treatment of hematological malignances (e.g., leukemia, lymphoma, myeloma) and nonmalignancies (e.g., in born errors of metabolism, sickle cells anemia, autoimmune diseases), but further advances in other areas of regenerative medicine (e.g., cardiac repair) will directly benefit with the use of cord blood. These clinical outcomes demonstrate that effector cells may be delivered by an allogeneic approach, where strict tissue matching may not be necessary and treatment may be achieved by making use of the trophic support capability of cell therapy and not by a cell replacement mechanism.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Watkins, L. O. (2004) Epidemiology and burden of cardiovascular disease. Clin Cardiol 27, III2–6.

    Article  PubMed  Google Scholar 

  2. Libby, P., Theroux, P. (2005) Pathophysiology of coronary artery disease. Circulation 111, 3481–8.

    Article  PubMed  Google Scholar 

  3. Rubinstein, P., Carrier, C., Scaradavou, A., et al. (1998) Outcomes among 562 recipients of placental-blood transplants from unrelated donors. N Engl J Med 339, 1565–77.

    Article  PubMed  CAS  Google Scholar 

  4. Kurtzberg, J. (1996) Umbilical cord blood: a novel alternative source of hematopoietic stem cells for bone marrow transplantation. J Hematother 5, 95–6.

    Article  PubMed  CAS  Google Scholar 

  5. Gluckman, E., Broxmeyer, H. A., Auerbach, A. D., et al. (1989) Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med 321, 1174–8.

    Article  PubMed  CAS  Google Scholar 

  6. Tse, W. W., Zang, S. L., Bunting, K. D., Laughlin, M. J. (2008) Umbilical cord blood transplantation in adult myeloid leukemia. Bone Marrow Transplant 41, 465–72.

    Article  PubMed  CAS  Google Scholar 

  7. Laughlin, M. J., Barker, J., Bambach, B., et al. (2001) Hematopoietic engraftment and survival in adult recipients of umbilical-cord blood from unrelated donors. N Engl J Med 344, 1815–22.

    Article  PubMed  CAS  Google Scholar 

  8. Laughlin, M. J., Eapen, M., Rubinstein, P., et al. (2004) Outcomes after transplantation of cord blood or bone marrow from unrelated donors in adults with leukemia. N Engl J Med 351, 2265–75.

    Article  PubMed  CAS  Google Scholar 

  9. Atsuta, Y., Suzuki, R., Nagamura-Inoue, T., et al. (2009) Disease-specific analyses of unrelated cord blood transplantation compared with unrelated bone marrow transplantation in adult patients with acute leukemia. Blood 113, 1631–8.

    Article  PubMed  Google Scholar 

  10. Appelbaum, F. R. (2008) Allogeneic hematopoietic cell transplantation for acute myeloid leukemia when a matched related donor is not available Hematology Am Soc Hematol Educ Program 2008, 412–7.

    Article  Google Scholar 

  11. Wall, D. A., Chan, K. W. (2008) Selection of cord blood unit(s) for transplantation. Bone Marrow Transplant 42, 1–7.

    Article  PubMed  CAS  Google Scholar 

  12. MacMillan, M. L., Davies, S. M., Nelson, G. O., et al. (2008) Twenty years of unrelated donor bone marrow transplantation for pediatric acute leukemia facilitated by the National Marrow Donor Program. Biol Blood Marrow Transplant 14, 16–22.

    Article  PubMed  Google Scholar 

  13. Jaing, T. H., Hung, I. J., Yang, C. P., Tsai, M. H., Lee, W. I., Sun, C. F. (2008) Second transplant with two unrelated cord blood units for early graft failure after cord blood transplantation for thalassemia. Pediatr Transplant 13(6):766–8.

    Article  PubMed  Google Scholar 

  14. Gluckman, E., Wagner, J. E. (2008) Hematopoietic stem cell transplantation in childhood inherited bone marrow failure syndrome. Bone Marrow Transplant 41, 127–32.

    Article  PubMed  CAS  Google Scholar 

  15. Tepper, O. M., Capla, J. M., Galiano, R. D., et al. (2005) Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow-derived cells. Blood 105, 1068–77.

    Article  PubMed  CAS  Google Scholar 

  16. Assmus, B., Honold, J., Schachinger, V., et al. (2006) Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med 355, 1222–32.

    Article  PubMed  CAS  Google Scholar 

  17. Schachinger, V., Erbs, S., Elsasser, A., et al. (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 355, 1210–21.

    Article  PubMed  CAS  Google Scholar 

  18. Schachinger, V., Erbs, S., Elsasser, A., et al. (2006) Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur Heart J 27, 2775–83.

    Article  PubMed  Google Scholar 

  19. Schachinger, V., Tonn, T., Dimmeler, S., Zeiher, A. M. (2006) Bone-marrow-derived progenitor cell therapy in need of proof of concept: design of the REPAIR-AMI trial. Nat Clin Pract Cardiovasc Med 3 (Suppl 1), S23–8.

    Article  PubMed  Google Scholar 

  20. Lunde, K., Solheim, S., Aakhus, S., et al. (2006) Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med 355, 1199–209.

    Article  PubMed  CAS  Google Scholar 

  21. Dzau, V. J., Gnecchi, M., Pachori, A. S., Morello, F., Melo, L. G. (2005) Therapeutic potential of endothelial progenitor cells in cardiovascular diseases. Hypertension 46, 7–18.

    Article  PubMed  CAS  Google Scholar 

  22. Gnecchi, M., He, H., Noiseux, N., et al. (2006) Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 20, 661–9.

    Article  PubMed  CAS  Google Scholar 

  23. Kucia, M., Reca, R., Campbell, F. R., et al. (2006) A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia 20, 857–69.

    Article  PubMed  CAS  Google Scholar 

  24. Aiuti, A., Turchetto, L., Cota, M., et al. (1999) Human CD34(+) cells express CXCR4 and its ligand stromal cell-derived factor-1. Implications for infection by T-cell tropic human immunodeficiency virus. Blood 94, 62–73.

    PubMed  CAS  Google Scholar 

  25. Kucia, M., Dawn, B., Hunt, G., et al. (2004) Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction. Circ Res 95, 1191–9.

    Article  PubMed  CAS  Google Scholar 

  26. Massa, M., Rosti, V., Ferrario, M., et al. (2005) Increased circulating hematopoietic and endothelial progenitor cells in the early phase of acute myocardial infarction. Blood 105, 199–206.

    Article  PubMed  CAS  Google Scholar 

  27. Jo, D. Y., Rafii, S., Hamada, T., Moore, M. A. (2000) Chemotaxis of primitive hematopoietic cells in response to stromal cell-derived factor-1. J Clin Invest 105, 101–11.

    Article  PubMed  CAS  Google Scholar 

  28. Askari, A. T., Unzek, S., Popovic, Z. B., et al. (2003) Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 362, 697–703.

    Article  PubMed  CAS  Google Scholar 

  29. Kogler, G., Sensken, S., Airey, J. A., et al. (2004) A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 200, 123–35.

    Article  PubMed  Google Scholar 

  30. Kim, B. O., Tian, H., Prasongsukarn, K., et al. (2005) Cell transplantation improves ventricular function after a myocardial infarction: a preclinical study of human unrestricted somatic stem cells in a porcine model. Circulation 112, I96–104.

    Article  PubMed  Google Scholar 

  31. Bonanno, G., Perillo, A., Rutella, S., et al. (2004) Clinical isolation and functional characterization of cord blood CD133+ hematopoietic progenitor cells. Transfusion 44, 1087–97.

    Article  PubMed  Google Scholar 

  32. Civin, C. I., Almeida-Porada, G., Lee, M. J., Olweus, J., Terstappen, L. W., Zanjani, E. D. (1996) Sustained, retransplantable, multilineage engraftment of highly purified adult human bone marrow stem cells in vivo. Blood 88, 4102–9.

    PubMed  CAS  Google Scholar 

  33. Civin, C. I., Trischmann, T., Kadan, N. S., et al. (1996) Highly purified CD34-positive cells reconstitute hematopoiesis. J Clin Oncol 14, 2224–33.

    PubMed  CAS  Google Scholar 

  34. Fina, L., Molgaard, H. V., Robertson, D., et al. (1990) Expression of the CD34 gene in vascular endothelial cells. Blood 75, 2417–26.

    PubMed  CAS  Google Scholar 

  35. Peichev, M., Naiyer, A. J., Pereira, D., et al. (2000) Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95, 952–8.

    PubMed  CAS  Google Scholar 

  36. Fedak, P. W. (2008) Paracrine effects of cell transplantation: modifying ventricular remodeling in the failing heart. Semin Thorac Cardiovasc Surg 20, 87–93.

    Article  PubMed  Google Scholar 

  37. Chauhan, A., More, R. S., Mullins, P. A., Taylor, G., Petch, C., Schofield, P. M. (1996) Aging-associated endothelial dysfunction in humans is reversed by l-arginine. J Am Coll Cardiol 28, 1796–804.

    Article  PubMed  CAS  Google Scholar 

  38. Tschudi, M. R., Barton, M., Bersinger, N. A., et al. (1996) Effect of age on kinetics of nitric oxide release in rat aorta and pulmonary artery. J Clin Invest 98, 899–905.

    Article  PubMed  CAS  Google Scholar 

  39. Urbich, C., Aicher, A., Heeschen, C., et al. (2005) Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J Mol Cell Cardiol 39, 733–42.

    Article  PubMed  CAS  Google Scholar 

  40. Tang, Y. L., Tang, Y., Zhang, Y. C., Qian, K., Shen, L., Phillips, M. I. (2005) Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. J Am Coll Cardiol 46, 1339–50.

    Article  PubMed  CAS  Google Scholar 

  41. Ikeda, Y., Fukuda, N., Wada, M., et al. (2004) Development of angiogenic cell and gene therapy by transplantation of umbilical cord blood with vascular endothelial growth factor gene. Hypertens Res 27, 119–28.

    Article  PubMed  CAS  Google Scholar 

  42. Frangogiannis, N. G. (2004) Chemokines in the ischemic myocardium: from inflammation to fibrosis. Inflamm Res 53, 585–95.

    Article  PubMed  CAS  Google Scholar 

  43. Frangogiannis, N. G. (2004) The role of the chemokines in myocardial ischemia and reperfusion. Curr Vasc Pharmacol 2, 163–74.

    Article  PubMed  CAS  Google Scholar 

  44. Real, C., Caiado, F., Dias, S. (2008) Endothelial progenitors in vascular repair and angiogenesis: how many are needed and what to do? Cardiovasc Hematol Disord Drug Targets 8, 185–93.

    Article  PubMed  CAS  Google Scholar 

  45. Kinnaird, T., Stabile, E., Epstein, S. E., Fuchs, S. (2003) Current perspectives in therapeutic myocardial angiogenesis. J Interv Cardiol 16, 289–97.

    Article  PubMed  Google Scholar 

  46. Walter, D. H., Haendeler, J., Reinhold, J., et al. (2005) Impaired CXCR4 signaling contributes to the reduced neovascularization capacity of endothelial progenitor cells from patients with coronary artery disease. Circ Res 97, 1142–51.

    Article  PubMed  CAS  Google Scholar 

  47. Pinhal-Enfield, G., Ramanathan, M., Hasko, G., et al. (2003) An angiogenic switch in macrophages involving synergy between Toll-like receptors 2, 4, 7, and 9 and adenosine A(2A) receptors. Am J Pathol 163, 711–21.

    Article  PubMed  CAS  Google Scholar 

  48. Koczulla, R., Degenfeld, G., Kupatt, C., et al. (2003) An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest 111, 1665–72.

    PubMed  CAS  Google Scholar 

  49. Matzinger, P. (2002) The danger model: a renewed sense of self. Science 296, 301–5.

    Article  PubMed  CAS  Google Scholar 

  50. Fu, J., Lin, G., Zeng, B., et al. (2006) Anti-ischemia/reperfusion of C1 inhibitor in myocardial cell injury via regulation of local myocardial C3 activity. Biochem Biophys Res Commun 350, 162–8.

    Article  PubMed  CAS  Google Scholar 

  51. Mahaffey, K. W., Granger, C. B., Nicolau, J. C., et al. (2003) Effect of pexelizumab, an anti-C5 complement antibody, as adjunctive therapy to fibrinolysis in acute myocardial infarction: the COMPlement inhibition in myocardial infarction treated with thromboLYtics (COMPLY) trial. Circulation 108, 1176–83.

    Article  PubMed  CAS  Google Scholar 

  52. Litt, M. R., Jeremy, R. W., Weisman, H. F., Winkelstein, J. A., Becker, L. C. (1989) Neutrophil depletion limited to reperfusion reduces myocardial infarct size after 90 minutes of ischemia. Evidence for neutrophil-mediated reperfusion injury. Circulation 80, 1816–27.

    Article  PubMed  CAS  Google Scholar 

  53. Solomon, D. H., Schneeweiss, S., Glynn, R. J., et al. (2004) Relationship between selective cyclooxygenase-2 inhibitors and acute myocardial infarction in older adults. Circulation 109, 2068–73.

    Article  PubMed  CAS  Google Scholar 

  54. Weihrauch, D., Arras, M., Zimmermann, R., Schaper, J. (1995) Importance of monocytes/macrophages and fibroblasts for healing of micronecroses in porcine myocardium. Mol Cell Biochem 147, 13–9.

    Article  PubMed  CAS  Google Scholar 

  55. Wu, K. H., Zhou, B., Mo, X. M., et al. (2007) Therapeutic potential of human umbilical cord-derived stem cells in ischemic diseases. Transplant Proc 39, 1620–2.

    Article  PubMed  CAS  Google Scholar 

  56. Henning, R. J., Burgos, J. D., Ondrovic, L., Sanberg, P., Balis, J., Morgan, M. B. (2006) Human umbilical cord blood progenitor cells are attracted to infarcted myocardium and significantly reduce myocardial infarction size. Cell Transplant 15, 647–58.

    Article  PubMed  Google Scholar 

  57. Elmadbouh, I., Haider, H., Jiang, S., Idris, N. M., Lu, G., Ashraf, M. (2007) Ex vivo delivered stromal cell-derived factor-1alpha promotes stem cell homing and induces angiomyogenesis in the infarcted myocardium. J Mol Cell Cardiol 42, 792–803.

    Article  PubMed  CAS  Google Scholar 

  58. Smith, R. R., Barile, L., Messina, E., Marban, E. (2008) Stem cells in the heart: what’s the buzz all about? Part 2: Arrhythmic risks and clinical studies. Heart Rhythm 5, 880–7.

    Article  PubMed  Google Scholar 

  59. Gepstein, L. (2008) Electrophysiologic implications of myocardial stem cell therapies. Heart Rhythm 5, S48–52.

    Article  PubMed  Google Scholar 

  60. Mihu, C. M., Mihu, D., Costin, N., Rus Ciuca, D., Susman, S., Ciortea, R. (2008) Isolation and characterization of stem cells from the placenta and the umbilical cord. Rom J Morphol Embryol 49, 441–6.

    PubMed  Google Scholar 

  61. Martins, A. A., Paiva, A., Morgado, J. M., Gomes, A., Pais, M. L. (2009) Quantification and immunophenotypic characterization of bone marrow and umbilical cord blood mesenchymal stem cells by multicolor flow cytometry. Transplant Proc 41, 943–6.

    Article  PubMed  CAS  Google Scholar 

  62. Chamberlain, G., Fox, J., Ashton, B., Middleton, J. (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25, 2739–49.

    Article  PubMed  CAS  Google Scholar 

  63. Yamada, Y., Yokoyama, S., Wang, X. D., Fukuda, N., Takakura, N. (2007) Cardiac stem cells in brown adipose tissue express CD133 and induce bone marrow nonhematopoietic cells to differentiate into cardiomyocytes. Stem Cells 25, 1326–33.

    Article  PubMed  CAS  Google Scholar 

  64. Stamm, C., Westphal, B., Kleine, H. D., et al. (2003) Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361, 45–6.

    Article  PubMed  Google Scholar 

  65. Menasche, P., Hagege, A. A., Vilquin, J. T., et al. (2003) Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol 41, 1078–83.

    Article  PubMed  Google Scholar 

  66. Reffelmann, T., Konemann, S., Kloner, R. A. (2009) Promise of blood- and bone marrow-derived stem cell transplantation for functional cardiac repair: putting it in perspective with existing therapy. J Am Coll Cardiol 53, 305–8.

    Article  PubMed  Google Scholar 

  67. Dawn, B., Abdel-Latif, A., Sanganalmath, S. K., Flaherty, M. P., Zuba-Surma, E. K. (2009) Cardiac repair with adult bone marrow-derived cells: the clinical evidence. Antioxid Redox Signal 11, 1865–82.

    Article  PubMed  CAS  Google Scholar 

  68. Hill, J. M., Zalos, G., Halcox, J. P., et al. (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348, 593–600.

    Article  PubMed  Google Scholar 

  69. Werner, N., Kosiol, S., Schiegl, T., et al. (2005) Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 353, 999–1007.

    Article  PubMed  CAS  Google Scholar 

  70. Furfaro, E. M., Gaballa, M. A. (2007) Do adult stem cells ameliorate the damaged myocardium? Human cord blood as a potential source of stem cells. Curr Vasc Pharmacol 5, 27–44.

    Article  PubMed  CAS  Google Scholar 

  71. Jaing, T. H., Hsia, S. H., Chiu, C. H., Hou, J. W., Wang, C. J., Chow, R. (2008) Successful unrelated cord blood transplantation in a girl with malignant infantile osteopetrosis. Chin Med J (Engl) 121, 1245–6.

    Google Scholar 

  72. Finney, M. R., Greco, N. J., Haynesworth, S. E., et al. (2006) Direct comparison of umbilical cord blood versus bone marrow-derived endothelial precursor cells in mediating neovascularization in response to vascular ischemia. Biol Blood Marrow Transplant 12, 585–93.

    Article  PubMed  Google Scholar 

  73. Prasad, A., Rihal, C. S., Lennon, R. J., Wiste, H. J., Singh, M., Holmes, D. R., Jr. (2007) Trends in outcomes after percutaneous coronary intervention for chronic total occlusions: a 25-year experience from the Mayo Clinic. J Am Coll Cardiol 49, 1611–8.

    Article  PubMed  Google Scholar 

  74. Stone, G. W., Gersh, B. J. (2006) Facilitated angioplasty: paradise lost. Lancet 367, 543–6.

    Article  PubMed  Google Scholar 

  75. Hochman, J. S., Lamas, G. A., Buller, C. E., et al. (2006) Coronary intervention for persistent occlusion after myocardial infarction. N Engl J Med 355, 2395–407.

    Article  PubMed  CAS  Google Scholar 

  76. Dale S. Adler, H. L., Ravi Nair, Jonathan L. Goldberg, Nicholas J. Greco, Tom Lassar, Daniel I. Simon, Mary J. Laughlin, and Vincent J. Pompili. (in press) Safety and efficacy of autologous intracoronary CD133+ stem cell injections in chronic total occlusions (SEACOAST trial). Cell Transplant.

    Google Scholar 

  77. Fredrickson, J. K. (1998) Umbilical cord blood stem cells: my body makes them, but do I get to keep them? Analysis of the FDA proposed regulations and the impact on individual constitutional property rights. J Contemp Health Law Policy 14, 477–502.

    PubMed  CAS  Google Scholar 

  78. Nakahata, T., Ogawa, M. (1982) Hemopoietic colony-forming cells in umbilical cord blood with extensive capability to generate mono- and multipotential hemopoietic progenitors. J Clin Invest 70, 1324–8.

    Article  PubMed  CAS  Google Scholar 

  79. Broxmeyer, H. E., Douglas, G. W., Hangoc, G., et al. (1989) Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci U S A 86, 3828–32.

    Article  PubMed  CAS  Google Scholar 

  80. Riordan, N. H., Chan, K., Marleau, A. M., Ichim, T. E. (2007) Cord blood in regenerative medicine: do we need immune suppression? J Transl Med 5, 8.

    Article  PubMed  Google Scholar 

  81. Storms, R. W., Trujillo, A. P., Springer, J. B., et al. (1999) Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci U S A 96, 9118–23.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Greco PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Greco, N., Laughlin, M.J. (2010). Umbilical Cord Blood Stem Cells for Myocardial Repair and Regeneration. In: Lee, R. (eds) Stem Cells for Myocardial Regeneration. Methods in Molecular Biology, vol 660. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-705-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-705-1_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-704-4

  • Online ISBN: 978-1-60761-705-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics