Skip to main content

Distinct Pathways Involved in S-Phase Checkpoint Control

  • Chapter
  • First Online:
  • 849 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

The S-phase checkpoint is activated when DNA damage occurs during DNA synthesis or when DNA replication intermediates accumulate. Depending on the type and magnitude of damage, cells activate one of the three distinct S-phase checkpoint pathways: (1) an intra-S-phase checkpoint induced by double strand break, (2) a replication checkpoint by the stalled replication fork, and (3) a S–M checkpoint to block premature mitosis. These checkpoint pathways coordinate a network of signaling molecules and are thought to ensure the fidelity of the replicating genome.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bartek J, Lukas C, Lukas J (2004) Checking on DNA damage in S phase. Nat Rev Mol Cell Biol 5:792–804

    Article  CAS  PubMed  Google Scholar 

  2. Bartek J, Bartkova J, Lukas J (2007) DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene 26:7773–7779

    Article  CAS  PubMed  Google Scholar 

  3. Costa S, Blow JJ (2007) The elusive determinants of replication origins. EMBO Rep 8:332–334

    Article  CAS  PubMed  Google Scholar 

  4. Bell SP, Dutta A (2002) DNA replication in eukaryotic cells. Annu Rev Biochem 71:333–374

    Article  CAS  PubMed  Google Scholar 

  5. Sclafani RA, Holzen TM (2007) Cell cycle regulation of DNA replication. Annu Rev Genet 41:237–280

    Article  CAS  PubMed  Google Scholar 

  6. Tsuyama T, Tada S, Watanabe S, Seki M, Enomoto T (2005) Licensing for DNA replication requires a strict sequential assembly of Cdc6 and Cdt1 onto chromatin in Xenopus egg extracts. Nucleic Acids Res 33:765–775

    Article  CAS  PubMed  Google Scholar 

  7. Randell JC, Bowers JL, Rodriguez HK, Bell SP (2006) Sequential ATP hydrolysis by Cdc6 and ORC directs loading of the Mcm2–7 helicase. Mol Cell 21:29–39

    Article  CAS  PubMed  Google Scholar 

  8. Bowers JL, Randell JC, Chen S, Bell SP (2004) ATP hydrolysis by ORC catalyzes reiterative Mcm2–7 assembly at a defined origin of replication. Mol Cell 16:967–978

    Article  CAS  PubMed  Google Scholar 

  9. Speck C, Chen Z, Li H, Stillman B (2005) ATPase-dependent cooperative binding of ORC and Cdc6 to origin DNA. Nat Struct Mol Biol 12:965–971

    CAS  PubMed  Google Scholar 

  10. Maiorano D, Lutzmann M, Mechali M (2006) MCM proteins and DNA replication. Curr Opin Cell Biol 18:130–136

    Article  CAS  PubMed  Google Scholar 

  11. Ishimi Y (1997) A DNA helicase activity is associated with an MCM4, -6, and -7 protein complex. J Biol Chem 272:24508–24513

    Article  CAS  PubMed  Google Scholar 

  12. McGeoch AT, Trakselis MA, Laskey RA, Bell SD (2005) Organization of the archaeal MCM complex on DNA and implications for the helicase mechanism. Nat Struct Mol Biol 12:756–762

    Article  CAS  PubMed  Google Scholar 

  13. Pacek M, Walter JC (2004) A requirement for MCM7 and Cdc45 in chromosome unwinding during eukaryotic DNA replication. EMBO J 23:3667–3676

    Article  CAS  PubMed  Google Scholar 

  14. Kulartz M, Knippers R (2004) The replicative regulator protein geminin on chromatin in the HeLa cell cycle. J Biol Chem 279:41686–41694

    Article  CAS  PubMed  Google Scholar 

  15. Maiorano D, Rul W, Mechali M (2004) Cell cycle regulation of the licensing activity of Cdt1 in Xenopus laevis. Exp Cell Res 295:138–149

    Article  CAS  PubMed  Google Scholar 

  16. Osborn AJ, Elledge SJ, Zou L (2002) Checking on the fork: the DNA-replication stress-response pathway. Trends Cell Biol 12:509–516

    Article  CAS  PubMed  Google Scholar 

  17. Xu B, Kim ST, Lim DS, Kastan MB (2002) Two molecularly distinct G(2)/M checkpoints are induced by ionizing irradiation. Mol Cell Biol 22:1049–1059

    Article  CAS  PubMed  Google Scholar 

  18. Hartwell LH, Weinert TA (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 246:629–634

    Article  CAS  PubMed  Google Scholar 

  19. Painter RB, Young BR (1980) Radiosensitivity in ataxia-telangiectasia: a new explanation. Proc Natl Acad Sci USA 77:7315–7317

    Article  CAS  PubMed  Google Scholar 

  20. Painter RB, Young BR (1975) X-ray-induced inhibition of DNA synthesis in Chinese hamster ovary, human HeLa, and mouse L cells. Radiat Res 64:648–656

    Article  CAS  PubMed  Google Scholar 

  21. Merrick CJ, Jackson D, Diffley JF (2004) Visualization of altered replication dynamics after DNA damage in human cells. J Biol Chem 279:20067–20075

    Article  CAS  PubMed  Google Scholar 

  22. Taylor AM, Harnden DG, Arlett CF et al (1975) Ataxia telangiectasia: a human mutation with abnormal radiation sensitivity. Nature 258:427–429

    Article  CAS  PubMed  Google Scholar 

  23. Petermann E, Maya-Mendoza A, Zachos G, Gillespie DA, Jackson DA, Caldecott KW (2006) Chk1 requ-irement for high global rates of replication fork progression during normal vertebrate S phase. Mol Cell Biol 26:3319–3326

    Article  CAS  PubMed  Google Scholar 

  24. Jackson DA, Pombo A (1998) Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J Cell Biol 140:1285–1295

    Article  CAS  PubMed  Google Scholar 

  25. Abraham RT (2004) PI 3-kinase related kinases: ‘big’ players in stress-induced signaling pathways. DNA Repair (Amst) 3:883–887

    Article  CAS  Google Scholar 

  26. Matsuoka S, Ballif BA, Smogorzewska A et al (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316:1160–1166

    Article  CAS  PubMed  Google Scholar 

  27. Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421:499–506

    Article  CAS  PubMed  Google Scholar 

  28. Pellegrini M, Celeste A, Difilippantonio S et al (2006) Autophosphorylation at serine 1987 is dispensable for murine Atm activation in vivo. Nature 443:222–225

    Article  CAS  PubMed  Google Scholar 

  29. Thompson LH, Schild D (2002) Recombinational DNA repair and human disease. Mutat Res 509:49–78

    CAS  PubMed  Google Scholar 

  30. Falck J, Coates J, Jackson SP (2005) Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434:605–611

    Article  CAS  PubMed  Google Scholar 

  31. You Z, Chahwan C, Bailis J, Hunter T, Russell P (2005) ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1. Mol Cell Biol 25:5363–5379

    Article  CAS  PubMed  Google Scholar 

  32. Berkovich E, Monnat RJ Jr, Kastan MB (2007) Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nat Cell Biol 9:683–690

    Article  CAS  PubMed  Google Scholar 

  33. Lim DS, Kim ST, Xu B et al (2000) ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 404:613–617

    Article  CAS  PubMed  Google Scholar 

  34. Zhao S, Weng YC, Yuan SS et al (2000) Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products. Nature 405:473–477

    Article  CAS  PubMed  Google Scholar 

  35. Matsuoka S, Rotman G, Ogawa A, Shiloh Y, Tamai K, Elledge SJ (2000) Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc Natl Acad Sci USA 97:10389–10394

    Article  CAS  PubMed  Google Scholar 

  36. Takai H, Naka K, Okada Y et al (2002) Chk2-deficient mice exhibit radioresistance and defective p53-mediated transcription. EMBO J 21:5195–5205

    Article  CAS  PubMed  Google Scholar 

  37. Falck J, Mailand N, Syljuasen RG, Bartek J, Lukas J (2001) The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410:842–847

    Article  CAS  PubMed  Google Scholar 

  38. Adams KE, Medhurst AL, Dart DA, Lakin ND (2006) Recruitment of ATR to sites of ionising radiation-induced DNA damage requires ATM and components of the MRN protein complex. Oncogene 25:3894–3904

    Article  CAS  PubMed  Google Scholar 

  39. Cuadrado M, Martinez-Pastor B, Murga M et al (2006) ATM regulates ATR chromatin loading in response to DNA double-strand breaks. J Exp Med 203:297–303

    Article  CAS  PubMed  Google Scholar 

  40. Hurley PJ, Wilsker D, Bunz F (2007) Human cancer cells require ATR for cell cycle progression following exposure to ionizing radiation. Oncogene 26:2535–2542

    Article  CAS  PubMed  Google Scholar 

  41. Jazayeri A, Falck J, Lukas C et al (2006) ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol 8:37–45

    Article  CAS  PubMed  Google Scholar 

  42. Myers JS, Cortez D (2006) Rapid activation of ATR by ionizing radiation requires ATM and Mre11. J Biol Chem 281:9346–9350

    Article  CAS  PubMed  Google Scholar 

  43. Zhao H, Piwnica-Worms H (2001) ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Mol Cell Biol 21:4129–4139

    Article  CAS  PubMed  Google Scholar 

  44. Mailand N, Falck J, Lukas C et al (2000) Rapid destruction of human Cdc25A in response to DNA damage. Science 288:1425–1429

    Article  Google Scholar 

  45. Mailand N, Bekker-Jensen S, Bartek J, Lukas J (2006) Destruction of Claspin by SCFbetaTrCP restrains Chk1 activation and facilitates recovery from genotoxic stress. Mol Cell 23:307–318

    Article  Google Scholar 

  46. Mamely I, van Vugt MA, Smits VA et al (2006) Polo-like kinase-1 controls proteasome-dependent degradation of Claspin during checkpoint recovery. Curr Biol 16:1950–1955

    Article  CAS  PubMed  Google Scholar 

  47. Peschiaroli A, Dorrello NV, Guardavaccaro D et al (2006) SCFbetaTrCP-mediated degradation of Claspin regulates recovery from the DNA replication checkpoint response. Mol Cell 23:319–329

    Article  CAS  PubMed  Google Scholar 

  48. Cha RS, Kleckner N (2002) ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones. Science 297:602–606

    Article  CAS  PubMed  Google Scholar 

  49. Mirkin SM (2006) DNA structures, repeat expansions and human hereditary disorders. Curr Opin Struct Biol 16:351–358

    Article  CAS  PubMed  Google Scholar 

  50. Durkin SG, Glover TW (2007) Chromosome fragile sites. Annu Rev Genet 41:169–192

    Article  CAS  PubMed  Google Scholar 

  51. Brewer BJ, Fangman WL (1988) A replication fork barrier at the 3′ end of yeast ribosomal RNA genes. Cell 55:637–643

    Article  CAS  PubMed  Google Scholar 

  52. Ferguson BM, Brewer BJ, Reynolds AE, Fangman WL (1991) A yeast origin of replication is activated late in S phase. Cell 65:507–515

    Article  CAS  PubMed  Google Scholar 

  53. Paulsen RD, Cimprich KA (2007) The ATR pathway: fine-tuning the fork. DNA Repair (Amst) 6:953–966

    Article  CAS  Google Scholar 

  54. Myung K, Datta A, Kolodner RD (2001) Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae. Cell 104:397–408

    Article  CAS  PubMed  Google Scholar 

  55. Myung K, Kolodner RD (2002) Suppression of genome instability by redundant S-phase checkpoint pathways in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 99:4500–4507

    Article  CAS  PubMed  Google Scholar 

  56. Brown EJ, Baltimore D (2000) ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev 14:397–402

    CAS  PubMed  Google Scholar 

  57. de Klein A, Muijtjens M, van Os R et al (2000) Targeted disruption of the cell-cycle checkpoint gene ATR leads to early embryonic lethality in mice. Curr Biol 10:479–482

    Article  PubMed  Google Scholar 

  58. Liu Q, Guntuku S, Cui XS et al (2000) Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev 14:1448–1459

    Article  CAS  PubMed  Google Scholar 

  59. Takai H, Tominaga K, Motoyama N et al (2000) Aberrant cell cycle checkpoint function and early embryonic death in Chk1(−/−) mice. Genes Dev 14:1439–1447

    CAS  PubMed  Google Scholar 

  60. Cortez D, Guntuku S, Qin J, Elledge SJ (2001) ATR and ATRIP: partners in checkpoint signaling. Science 294:1713–1716

    Article  CAS  PubMed  Google Scholar 

  61. Syljuasen RG, Sorensen CS, Hansen LT et al (2005) Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage. Mol Cell Biol 25:3553–3562

    Article  CAS  PubMed  Google Scholar 

  62. Desany BA, Alcasabas AA, Bachant JB, Elledge SJ (1998) Recovery from DNA replicational stress is the essential function of the S-phase checkpoint pathway. Genes Dev 12:2956–2970

    Article  CAS  PubMed  Google Scholar 

  63. Naruyama H, Shimada M, Niida H et al (2008) Essential role of Chk1 in S phase progression through regulation of RNR2 expression. Biochem Biophys Res Commun 374:79–83

    Article  CAS  PubMed  Google Scholar 

  64. Lopes M, Cotta-Ramusino C, Pellicioli A et al (2001) The DNA replication checkpoint response stabilizes stalled replication forks. Nature 412:557–561

    Article  CAS  PubMed  Google Scholar 

  65. Tercero JA, Diffley JF (2001) Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Nature 412:553–557

    Article  CAS  PubMed  Google Scholar 

  66. Sogo JM, Lopes M, Foiani M (2002) Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297:599–602

    Article  CAS  PubMed  Google Scholar 

  67. Cobb JA, Bjergbaek L, Shimada K, Frei C, Gasser SM (2003) DNA polymerase stabilization at stalled replication forks requires Mec1 and the RecQ helicase Sgs1. EMBO J 22:4325–4336

    Article  CAS  PubMed  Google Scholar 

  68. Dimitrova DS, Gilbert DM (2000) Temporally coordinated assembly and disassembly of replication factories in the absence of DNA synthesis. Nat Cell Biol 2:686–694

    Article  CAS  PubMed  Google Scholar 

  69. Cortez D, Glick G, Elledge SJ (2004) Minichromosome maintenance proteins are direct targets of the ATM and ATR checkpoint kinases. Proc Natl Acad Sci USA 101:10078–10083

    Article  CAS  PubMed  Google Scholar 

  70. Yoo HY, Shevchenko A, Dunphy WG (2004) Mcm2 is a direct substrate of ATM and ATR during DNA damage and DNA replication checkpoint responses. J Biol Chem 279:53353–53364

    Article  CAS  PubMed  Google Scholar 

  71. Cobb JA, Schleker T, Rojas V, Bjergbaek L, Tercero JA, Gasser SM (2005) Replisome instability, fork collapse, and gross chromosomal rearrangements arise synergistically from Mec1 kinase and RecQ helicase mutations. Genes Dev 19:3055–3069

    Article  CAS  PubMed  Google Scholar 

  72. Pichierri P, Rosselli F (2004) The DNA crosslink-induced S-phase checkpoint depends on ATR-CHK1 and ATR-NBS1-FANCD2 pathways. EMBO J 23:1178–1187

    Article  CAS  PubMed  Google Scholar 

  73. Andreassen PR, D’Andrea AD, Taniguchi T (2004) ATR couples FANCD2 monoubiquitination to the DNA-damage response. Genes Dev 18:1958–1963

    Article  CAS  PubMed  Google Scholar 

  74. Chen J (2000) Ataxia telangiectasia-related protein is involved in the phosphorylation of BRCA1 following deoxyribonucleic acid damage. Cancer Res 60:5037–5039

    CAS  PubMed  Google Scholar 

  75. Tibbetts RS, Cortez D, Brumbaugh KM et al (2000) Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress. Genes Dev 14:2989–3002

    Article  CAS  PubMed  Google Scholar 

  76. Zhang YW, Otterness DM, Chiang GG et al (2005) Genotoxic stress targets human Chk1 for degradation by the ubiquitin-proteasome pathway. Mol Cell 19:607–618

    Article  CAS  PubMed  Google Scholar 

  77. Boddy MN, Furnari B, Mondesert O, Russell P (1998) Replication checkpoint enforced by kinases Cds1 and Chk1. Science 280:909–912

    Article  CAS  PubMed  Google Scholar 

  78. Zachos G, Rainey MD, Gillespie DA (2005) Chk1-dependent S–M checkpoint delay in vertebrate cells is linked to maintenance of viable replication structures. Mol Cell Biol 25:563–574

    Article  CAS  PubMed  Google Scholar 

  79. Brown EJ, Baltimore D (2003) Essential and dispensable roles of ATR in cell cycle arrest and genome maintenance. Genes Dev 17:615–628 Paula J. Hurley and Fred Bunz

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment:

This work was supported by the Flight Attendant Medical Research Institute (P.J. Hurley and F. Bunz).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hurley, P.J., Bunz, F. (2010). Distinct Pathways Involved in S-Phase Checkpoint Control. In: Siddik, Z. (eds) Checkpoint Controls and Targets in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-60761-178-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-178-3_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-177-6

  • Online ISBN: 978-1-60761-178-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics