Skip to main content

IgE-Dependent and Independent Effector Mechanisms in Human and Murine Anaphylaxis

  • Chapter
  • First Online:
Anaphylaxis and Hypersensitivity Reactions

Abstract

Anaphylaxis is shock mediated by cells of the innate immune system. Studies in murine models demonstrate at least three pathways: (1) antigen cross-linking of IgE bound to Fcε(epsilon)RI leads to mast cell degranulation with release of histamine and PAF; (2) antigen-IgG complexes cross-link Fcγ(gamma)RIII on mast cells and basophils with secretion of PAF; and (3) complement activation leads to production of C3a and C5a, which activate mast cells, basophils, and macrophages. C3a and C5a appear unable to induce shock by themselves in the murine models, but can exacerbate anaphylaxis induced by the other mechanisms. Anaphylaxis can also be exacerbated by IL-4 and IL-13, which increase effector cell responsiveness to vasoactive mediators, and by β(beta)-adrenergic receptor antagonists, which decrease ability to compensate for vascular leak and decreased intravascular volume. IgG-dependent anaphylaxis requires much higher concentrations of antibody and antigen than IgE-mediated anaphylaxis; consequently, IgG antibodies can block the development of anaphylaxis when antigen quantity is low by binding to antigen before it can cross-link mast cell-associated IgE, but can mediate anaphylaxis when antigen quantity is high. Inhibitory receptors, such as Fcγ(gamma)RIIb, can suppress mast cell activation and anaphylaxis, but this effect is less important in our models than IgG neutralization of antigen. Although human IgE anaphylaxis is well established, the existence of IgG-mediated human anaphylaxis is unproven. However, we believe that studies of human anaphylaxis associated with infusion of large quantities of foreign proteins, such as chimeric monoclonal antibodies, make it likely that this type of human anaphylaxis can occur. Elucidation of these mechanisms suggests prophylactic and therapeutic approaches and goals for future anaphylaxis research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ab:

Antibody

Ag:

Antigen

Fcε(epsilon)RI:

High-affinity receptor for IgE

Fcγ(gamma)RIII:

Low-affinity receptor 3 for IgG

IgE:

Immunoglobulin E

IgG:

Immunoglobulin G

mAb:

Monoclonal antibody

PAF:

Platelet-activating factor

PCA:

Passive cutaneous anaphylaxis

R:

Receptor

TNP:

Trinitrophenyl

References

  1. Verdier F, Chazal I, Descotes J. Anaphylaxis models in the guinea-pig. Toxicology 1994;93:55–61.

    Article  PubMed  CAS  Google Scholar 

  2. Oettgen HC, Martin TR, Wynshaw-Boris A, Deng C, Drazen JM, Leder P. Active anaphylaxis in IgE-deficient mice. Nature 1994;370:367–370.

    Article  PubMed  CAS  Google Scholar 

  3. Dombrowicz D, Flamand V, Brigman KK, Koller BH, Kinet JP. Abolition of anaphylaxis by targeted disruption of the high affinity immunoglobulin E receptor α(alpha) chain gene. Cell 1993;75: 969–976.

    Article  PubMed  CAS  Google Scholar 

  4. Takai T, Li M, Sylvestre D, Clynes R, Ravetch JV. FcRγ(gamma) chain deletion results in pleiotrophic effector cell defects. Cell 1994;76:519–529.

    Article  PubMed  CAS  Google Scholar 

  5. Fossati-Jimack L, Ioan-Facsinay A, Reininger L, et al. Markedly different pathogenicity of four immunoglobulin G isotype-switch variants of an antierythrocyte autoantibody is based on their capacity to interact in vivo with the low-affinity Fcγ(gamma) receptor III. J Exp Med 2000;191:1293–1302.

    Article  PubMed  CAS  Google Scholar 

  6. Hazenbos WL, Gessner JE, Hofhuis FM, et al. Impaired IgG-dependent anaphylaxis and Arthus reaction in Fcγ(gamma)RIII (CD16) deficient mice. Immunity 196;5:181–188.

    Google Scholar 

  7. Takai T, Ono M, Hikida M, Ohmori H, Ravetch JV. Augmented humoral and anaphylactic responses in Fcγ(gamma)RII-deficient mice. Nature 1996;379:346–349.

    Article  PubMed  CAS  Google Scholar 

  8. Ha TY, Reed ND, Crowle PK. Delayed expulsion of adult Trichinella spiralis by mast cell-deficient W/Wv mice. Infect Immun 1983;41:445–447.

    PubMed  CAS  Google Scholar 

  9. Grimbaldeston MA, Chen CC, Piliponsky AM, Tsai M, Tam SY, Galli SJ. Mast cell-deficient W-sash c-kit mutant Kit W-sh/W-sh mice as a model for investigating mast cell biology in vivo. Am J Pathol 2005;167:835–848.

    Article  PubMed  CAS  Google Scholar 

  10. Nishikawa S, Kusakabe M, Yoshinaga K, et al. In utero manipulation of coat color formation by a mono­clonal anti-c-kit antibody: two distinct waves of c-kit-dependency during melanocyte development. Embo J 1991;10:2111–2118.

    PubMed  CAS  Google Scholar 

  11. Tsujimura Y, Obata K, Mukai K, et al. Basophils play a pivotal role in immunoglobulin-G-mediated but not immunoglobulin-E-mediated systemic anaphylaxis. Immunity 2008;28:581–589.

    Article  PubMed  CAS  Google Scholar 

  12. Sokol CL, Barton GM, Farr AG, Medzhitov R. A mechanism for the initiation of allergen-induced T helper type 2 responses. Nat Immunol 2008;9:310–318.

    Article  PubMed  CAS  Google Scholar 

  13. Husztik E, Lazar G, Szilagyi S. Study on the mechanism of Kupffer cell phagocytosis blockade induced by gadolinium chloride. In: Wisse E, Knook D, eds. International Kupffer Cell Symposium. Noordwijkerhout, Netherlands: Elsevier/North-Holland Biomedical Press; 1977:387–395.

    Google Scholar 

  14. Van Rooijen N, Kors N, vd Ende M, Dijkstra CD. Depletion and repopulation of macrophages in spleen and liver of rat after intravenous treatment with liposome-encapsulated dichloromethylene diphosphonate. Cell Tissue Res 1990;260:215–222.

    Article  PubMed  Google Scholar 

  15. Kehry MR, Yamashita LC. Low-affinity IgE receptor (CD23) function on mouse B cells: role in IgE- dependent antigen focusing. Proc Natl Acad Sci USA 1989;86:7556–7560.

    Article  PubMed  CAS  Google Scholar 

  16. Ra C, Jouvin MH, Kinet JP. Complete structure of the mouse mast cell receptor for IgE (Fcε(epsilon)RI) and surface expression of chimeric receptors (rat–mouse–human) on transfected cells. J Biol Chem 1989;264:15323–15327.

    PubMed  CAS  Google Scholar 

  17. Squire CM, Studer EJ, Lees A, Finkelman FD, Conrad DH. Antigen presentation is enhanced by targeting antigen to the Fcε(epsilon)RII by antigen-anti-Fcε(epsilon)RII conjugates. J Immunol 1994;152:4388–4396.

    PubMed  CAS  Google Scholar 

  18. Kinet JP. The high-affinity IgE receptor (Fcε(epsilon)RI): from physiology to pathology. Annu Rev Immunol 1999;17:931–972.

    Article  PubMed  CAS  Google Scholar 

  19. Yokota A, Kikutani H, Tanaka T, et al. Two species of human Fc ε(epsilon) receptor II (Fcε(epsilon)RII/CD23): tissue-specific and IL-4-specific regulation of gene expression. Cell 1988;55:611–618.

    Article  PubMed  CAS  Google Scholar 

  20. van Neerven RJ, Wikborg T, Lund G, et al. Blocking antibodies induced by specific allergy vaccination prevent the activation of CD4+ T cells by inhibiting serum-IgE-facilitated allergen presentation. J Immunol 1999;163:2944–2952.

    PubMed  Google Scholar 

  21. Seder RA, et al. Production of interleukin-4 and other cytokines following stimulation of mast cell lines and in vivo mast cells/basophils. Int Arch Allergy Appl Immunol 1991;94:137–140.

    Article  PubMed  CAS  Google Scholar 

  22. Seder RA, Paul WE, Ben-Sasson SZ, et al. Mouse splenic and bone marrow cell populations that express high-affinity Fcε(epsilon) receptors and produce interleukin 4 are highly enriched in basophils. Proc Natl Acad Sci USA 1991;88:2835–2839.

    Article  PubMed  CAS  Google Scholar 

  23. MacGlashan D Jr, White JM, Huang SK, Ono SJ, Schroeder JT, Lichtenstein LM. Secretion of IL-4 from human basophils. The relationship between IL-4 mRNA and protein in resting and stimulated basophils. J Immunol 1994;152:3006–3016.

    PubMed  CAS  Google Scholar 

  24. Khodoun MV, Orekhova T, Potter C, Morris S, Finkelman FD. Basophils initiate IL-4 production during a memory T-dependent response. J Exp Med 2004;200:857–870.

    Article  PubMed  CAS  Google Scholar 

  25. Gessner A, Mohrs K, Mohrs M. Mast cells, basophils, and eosinophils acquire constitutive IL-4 and IL-13 transcripts during lineage differentiation that are sufficient for rapid cytokine production. J Immunol 2005;174:1063–1072.

    PubMed  CAS  Google Scholar 

  26. Fox PC, Basciano LK, Siraganian RP. Mouse mast cell activation and desensitization for immune aggregate-induced histamine release. J Immunol 1982;129:314–319.

    PubMed  CAS  Google Scholar 

  27. Strait RT, Morris SC, Yang M, Qu XW, Finkelman FD. Pathways of anaphylaxis in the mouse. J Allergy Clin Immunol 2002;109:658–668.

    Article  PubMed  CAS  Google Scholar 

  28. Camussi G, Aglietta M, Coda R, Bussolino F, Piacibello W, Tetta C. Release of platelet-activating factor (PAF) and histamine. II. The cellular origin of human PAF: monocytes, polymorphonuclear neutrophils and basophils. Immunology 1981;42:191–199.

    PubMed  CAS  Google Scholar 

  29. Ishizaka T, Conrad DH. Binding characteristics of human IgE receptors and initial triggering events in human mast cells for histamine release. Monogr Allergy 1983;18:14–24.

    PubMed  CAS  Google Scholar 

  30. Mencia-Huerta JM, Benveniste J. Platelet-activating factor and macrophages. I. Evidence for the release from rat and mouse peritoneal macrophages and not from mastocytes. Eur J Immunol 1975;9:409–415.

    Article  Google Scholar 

  31. Benveniste J. Paf-acether, an ether phospho-lipid with biological activity. Prog Clin Biol Res 1988;282:73–85.

    PubMed  CAS  Google Scholar 

  32. Bergamaschini L, Santangelo T, Faricciotti A, Ciavarella N, Mannucci PM, Agostoni A. Study of complement-mediated anaphylaxis in humans. The role of IgG subclasses (IgG1 and/or IgG4) in the complement-activating capacity of immune complexes. J Immunol 1996;156:1256–1261.

    PubMed  CAS  Google Scholar 

  33. Hugli TE. The structural basis for anaphylatoxin and chemotactic functions of C3a, C4a, and C5a. Crit Rev Immunol 1981;1:321–366.

    PubMed  CAS  Google Scholar 

  34. Carroll MC. The role of complement and complement receptors in induction and regulation of immunity. Annu Rev Immunol 1998;16:545–568.

    Article  PubMed  CAS  Google Scholar 

  35. Walport MJ. Complement. Second of two parts. N Engl J Med 2001;344:1140–1144.

    Article  PubMed  CAS  Google Scholar 

  36. Walport MJ. Complement. First of two parts. N Engl J Med 2001;344:1058–1066.

    Article  PubMed  CAS  Google Scholar 

  37. Klos A, Tenner AJ, Johswich KO, Ager RR, Reis ES, Köhl J. The role of the anaphylatoxins in health and disease. Mol Immunol 2009;46:2753–2766.

    Article  PubMed  CAS  Google Scholar 

  38. Damerau B. Biological activities of complement-derived peptides. Rev Physiol Biochem Pharmacol 1987;108:151–206.

    Article  PubMed  CAS  Google Scholar 

  39. Kownatzki E. Triggering of mast cells. Mol Immunol 1982;19:1297–1300.

    Article  PubMed  CAS  Google Scholar 

  40. Dias Da Silva W, Lepow IH. Complement as a mediator of inflammation. II. Biological properties of anaphylatoxin prepared with purified components of human complement. J Exp Med 1967;125:921–946.

    Article  Google Scholar 

  41. Snapper C, Finkelman F. Immunoglobulin Class Switching. In: Paul WE, ed. Fundamental Immunology. Philadelphia: Lippincott-Raven; 1999.

    Google Scholar 

  42. Faquim-Mauro EL, Coffman RL, Abrahamsohn IA, Macedo MS. Cutting edge: mouse IgG1 antibodies comprise two functionally distinct types that are differentially regulated by IL-4 and IL-12. J Immunol 1999;163:3572–3576.

    PubMed  CAS  Google Scholar 

  43. Silva SR, Casabuono A, Jacysyn JF, et al. Sialic acid residues are essential for the anaphylactic activity of murine IgG1 antibodies. J Immunol 2008;181:8308–8314.

    PubMed  CAS  Google Scholar 

  44. Bieber T, de la Salle H, Wollenberg A, et al. Human epidermal Langerhans cells express the high affinity receptor for immunoglobulin E (Fcε(epsilon)RI). J Exp Med 1992;175:1285–1290.

    Article  PubMed  CAS  Google Scholar 

  45. Maurer D, Fiebiger E, Reininger B, et al. Expression of functional high affinity immunoglobulin E receptors (Fcε(epsilon)RI) on monocytes of atopic individuals. J Exp Med 1994;179:745–750.

    Article  PubMed  CAS  Google Scholar 

  46. Maurer D, Fiebiger S, Ebner C, et al. Peripheral blood dendritic cells express Fcε(epsilon)RI as a complex composed of Fcε(epsilon)RI alpha- and Fcε(epsilon)RIγ(gamma)-chains and can use this receptor for IgE-mediated allergen presentation. J Immunol 1996;157:607–616.

    PubMed  CAS  Google Scholar 

  47. Lee JJ, McGarry MP. When is a mouse basophil not a basophil? Blood 2007;109:859–861.

    Article  PubMed  CAS  Google Scholar 

  48. Ravetch JV, Bolland S. IgG Fc receptors. Annu Rev Immunol 2001;19:275–290.

    Article  PubMed  CAS  Google Scholar 

  49. Ando A, Martin TR, Galli SJ. Effects of chronic treatment with the c-kit ligand, stem cell factor, on immunoglobulin E-dependent anaphylaxis in mice. Genetically mast cell-deficient Sl/Sld mice acquire anaphylactic responsiveness, but the congenic normal mice do not exhibit augmented responses. J Clin Invest 1993;92:1639–1649.

    Article  PubMed  CAS  Google Scholar 

  50. Strait RT, Morris SC, Finkelman FD. IgG-blocking antibodies inhibit IgE-mediated anaphylaxis in vivo through both antigen interception and Fcγ(gamma)RIIb cross-linking. J Clin Invest 2006;116:833–841.

    Article  PubMed  CAS  Google Scholar 

  51. Eshhar Z, Ofarim M, Waks T. Generation of hybridomas secreting murine reaginic antibodies of anti-DNP specificity. J Immunol 1980;124:775–780.

    PubMed  CAS  Google Scholar 

  52. Fish SC, Donaldson DD, Goldman SJ, Williams CM, Kasaian MT. IgE generation and mast cell effector function in mice deficient in IL-4 and IL-13. J Immunol 2005;174:7716–7724.

    PubMed  CAS  Google Scholar 

  53. Park JS, Choi IH, Lee DG, et al. Anti-IL-4 monoclonal antibody prevents antibiotics-induced active fatal anaphylaxis. J Immunol 1997;158:5002–5006.

    PubMed  CAS  Google Scholar 

  54. Morawetz RA, Gabriele L, Rizzo LV, Noben-Trauth N, Kühn R, Rajewsky K, Morawetz RA, et al. Interleukin (IL)-4-independent immunoglobulin class switch to immunoglobulin (Ig)E in the mouse. J Exp Med 1996;184:1651–1661.

    Article  PubMed  CAS  Google Scholar 

  55. Dombrowicz D, Flamand V, Miyajima I, Ravetch JV, Galli SJ, Kinet JP. Absence of Fcε(epsilon)RIα(alpha) chain results in upregulation of Fcγ(gamma)RIII-dependent mast cell degranulation and anaphylaxis. Evidence of competition between Fcε(epsilon)RI and Fcγ(gamma)RIII for limiting amounts of FcR β(beta) and γ(gamma) chains. J Clin Invest 1997;99:915–925.

    Article  PubMed  CAS  Google Scholar 

  56. Miyajima I, Dombrowicz D, Martin TR, Ravetch JV, Kinet JP, Galli SJ. Systemic anaphylaxis in the mouse can be mediated largely through IgG1 and Fcγ(gamma)RIII. Assessment of the cardiopulmonary changes, mast cell degranulation, and death associated with active or IgE- or IgG1-dependent passive anaphylaxis. J Clin Invest 1997;99:901–914.

    Article  PubMed  CAS  Google Scholar 

  57. Hirayama N, Hirano T, Köhler G, Kurata A, Okumura K, Ovary Z. Biological activities of antitrinitrophenyl and antidinitrophenyl mouse monoclonal antibodies. Proc Natl Acad Sci USA 1982;79:613–615.

    Article  PubMed  CAS  Google Scholar 

  58. Unkeless J. Characterization of a monoclonal antibody directed against mouse macrophage and lymphocyte Fc receptors. J Exp Med 1979;150:580–596.

    Article  PubMed  CAS  Google Scholar 

  59. Nimmerjahn F, Ravetch JV. Divergent immunoglobulin γ(gamma) subclass activity through selective Fc receptor binding. Science 2005;310:1510–1512.

    Article  PubMed  CAS  Google Scholar 

  60. Kinet JP, Blank U, Brini A, et al. The high-affinity receptor for immunoglobulin E: a target for therapy of allergic diseases. Int Arch Allergy Appl Immunol 1991;94:51–55.

    Article  PubMed  CAS  Google Scholar 

  61. Hazenbos WL, Heijnen IA, Meyer D, et al. Murine IgG1 complexes trigger immune effector functions predominantly via Fcγ(gamma)RIII (CD16). J Immunol 1998;161:3026–3032.

    PubMed  CAS  Google Scholar 

  62. Lázár G Jr, Lázár G, Kaszaki J, Oláh J, Kiss I, Husztik E. Inhibition of anaphylactic shock by gadolinium chloride-induced Kupffer cell blockade. Agents Actions 1994;41:C97–98.

    Article  PubMed  Google Scholar 

  63. Gibbs BF, et al. Purified human peripheral blood basophils release interleukin-13 and preformed interleukin-4 following immunological activation. Eur J Immunol 1996;26:2493–2498.

    Article  PubMed  CAS  Google Scholar 

  64. Strait RT, Morris SC, Smiley K, Urban JF Jr, Finkelman FD. IL-4 exacerbates anaphylaxis. J Immunol 2003;170:3835–3842.

    PubMed  CAS  Google Scholar 

  65. Coffman RL, Ohara J, Bond MW, Carty J, Zlotnik A, Paul WE. B cell stimulatory factor-1 enhances the IgE response of lipopolysaccharide-activated B cells. J Immunol 1986;136:4538–4541.

    PubMed  CAS  Google Scholar 

  66. Finkelman FD, Katona IM, Urban JF Jr, et al. IL-4 is required to generate and sustain in vivo IgE responses. J Immunol 1988;141:2335–2341.

    PubMed  CAS  Google Scholar 

  67. Swain SL, Weinberg AD, English M, Huston G. IL-4 directs the development of Th2-like helper effectors. J Immunol 1990;145:3796–3806.

    PubMed  CAS  Google Scholar 

  68. Shimoda K, van Deursen J, Sangster MY, et al. Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene. Nature 1996;380:630–633.

    Article  PubMed  CAS  Google Scholar 

  69. Yoshimoto T, Yasuda K, Tanaka H, et al. Basophils contribute to T(H)2-IgE responses in vivo via IL-4 production and presentation of peptide-MHC class II complexes to CD4+ T cells. Nat Immunol 2009;10:706–712.

    Article  PubMed  CAS  Google Scholar 

  70. Sokol CL, Chu NQ, Yu S, Nish SA, Laufer TM, Medzhitov R. Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response. Nat Immunol 10, 713–720 (2009).

    Article  PubMed  CAS  Google Scholar 

  71. Perrigoue JG, Saenz SA, Siracusa MC, et al. MHC class II-dependent basophil-CD4+ T cell interactions promote TH2 cytokine-dependent immunity. Nat Immunol 2009;10:697–705.

    Article  PubMed  CAS  Google Scholar 

  72. Kawabata Y, Yang TS, Yokochi TT, et al. Complement system is involved in anaphylactoid reaction induced by lipopolysaccharides in muramyldipeptide-treated mice. Shock 2000;14:572–577.

    Article  PubMed  CAS  Google Scholar 

  73. Murch O, Abdelrahman M, Kapoor A, Thiemermann C. Muramyl dipeptide enhances the response to endotoxin to cause multiple organ injury in the anesthetized rat. Shock 2008;29:388–394.

    PubMed  CAS  Google Scholar 

  74. Yamaguchi K, Yu Z, Kumamoto H, et al. Involvement of Kupffer cells in lipopolysaccharide-induced rapid accumulation of platelets in the liver and the ensuing anaphylaxis-like shock in mice. Biochim Biophys Acta 2006;1762:269–275.

    Article  PubMed  CAS  Google Scholar 

  75. Khodoun M, Strait R, Orekov T, et al. Peanuts can contribute to anaphylactic shock by activating complement. J Allergy Clin Immunol 2009;123:342–351.

    Article  PubMed  CAS  Google Scholar 

  76. Liu E, Moriyama H, Abiru N, et al. Anti-peptide autoantibodies and fatal anaphylaxis in NOD mice in response to insulin self-peptides B:9-23 and B:13-23. J Clin Invest 2002;110:1021–1027.

    PubMed  CAS  Google Scholar 

  77. Brandt EB, Strait RT, Hershko D, et al. Mast cells are required for experimental oral allergen-induced diarrhea. J Clin Invest 2003;112:1666–1677.

    PubMed  CAS  Google Scholar 

  78. Ravetch JV. Fc receptors. Curr Opin Immunol 1997;9:121–125.

    Article  PubMed  CAS  Google Scholar 

  79. Zhang K, Kepley CL, Terada T, Zhu D, Perez H, Saxon A. Inhibition of allergen-specific IgE reactivity by a human Ig Fcγ(gamma)-Fcε(epsilon) bifunctional fusion protein. J Allergy Clin Immunol 2004;114:321–327.

    Article  PubMed  CAS  Google Scholar 

  80. Van Scott MR, Mertsching E, Negrou E, et al. Systemic administration of an Fcγ(gamma)-Fcε(epsilon)-fusion protein in house dust mite sensitive nonhuman primates. Clin Immunol 2008;128:340–348.

    Article  PubMed  CAS  Google Scholar 

  81. Mertsching E, Bafetti L, Hess H, et al. A mouse Fcγ(gamma)-Fcε(epsilon) protein that inhibits mast cells through activation of Fcγ(gamma)RIIB, SH2 domain-containing inositol phosphatase 1, and SH2 domain-containing protein tyrosine phosphatases. J Allergy Clin Immunol 2008;121:441–447, e445.

    Article  PubMed  CAS  Google Scholar 

  82. Arimura A, Nagata M, Takeuchi M, Watanabe A, Nakamura K, Harada M. Active and passive cutaneous anaphylaxis in WBB6F1 mouse, a mast cell-deficient strain. Immunol Invest 1990;19:227–233.

    Article  PubMed  CAS  Google Scholar 

  83. Mancardi DA, Iannascoli B, Hoos S, England P, Daëron M, Bruhns P. Fcγ(gamma)RIV is a mouse IgE receptor that resembles macrophage Fcε(epsilon)RI in humans and promotes IgE-induced lung inflammation. J Clin Invest 2008;118:3738–3750.

    Article  PubMed  CAS  Google Scholar 

  84. Hirano M, et al. IgEb immune complexes activate macrophages through Fcγ(gamma)RIV binding. Nat Immunol 2007;8:762–771.

    Article  PubMed  CAS  Google Scholar 

  85. Nimmerjahn F, Bruhns P, Horiuchi K, Ravetch JV. Fcγ(gamma)RIV: a novel FcR with distinct IgG subclass specificity. Immunity 2005;23:41–51.

    Article  PubMed  CAS  Google Scholar 

  86. Worobec A. Metcalfe DD. Anaphylactic Syndrome. In: Austen KF, Frank MM, Atkinson JP, Cantor H, eds. Samter’s Immunologic Diseases. Philadelphia: Lippincott Williams & Wilkins; 2001:825–836.

    Google Scholar 

  87. Schwartz LB, Yunginger JW, Miller J, Bokhari R, Dull D. Time course of appearance and disappearance of human mast cell tryptase in the circulation after anaphylaxis. J Clin Invest 1989;83:1551–1555.

    Article  PubMed  CAS  Google Scholar 

  88. Casale TB, Busse WW, Kline JN, et al. Omalizumab pretreatment decreases acute reactions after rush immunotherapy for ragweed-induced seasonal allergic rhinitis. J Allergy Clin Immunol 2006;117:134–140.

    Article  PubMed  CAS  Google Scholar 

  89. Leung DY, Sampson HA, Yunginger JW, et al. Effect of anti-IgE therapy in patients with peanut allergy. N Engl J Med 2003;348:986–993.

    Article  PubMed  CAS  Google Scholar 

  90. Ochiai K, Kagami M, Umemiya K, Matsumura R, Kawashima T, Tomioka H. Expression of high-affinity IgE receptor (Fcε(epsilon)RI) on human alveolar macrophages from atopic and non-atopic patients. Int Arch Allergy Immunol 1996;111Suppl 1:55–58.

    Article  PubMed  Google Scholar 

  91. Simons FE, Frew AJ, Ansotegui IJ, et al. Risk assessment in anaphylaxis: current and future approaches. J Allergy Clin Immunol 2007;120:S2–S24.

    Article  PubMed  CAS  Google Scholar 

  92. Hedin H, Richter W, Messmer K, Renck H, Ljungström KG, Laubenthal H. Incidence, pathomechanism and prevention of dextran-induced anaphylactoid/anaphylactic reactions in man. Dev Biol Stand 1980;48:179–189.

    PubMed  CAS  Google Scholar 

  93. Umeda Y, Fukumoto Y, Miyauchi T, Imaizumi M, Shimabukuro K, Mori Y, et al. Anaphylactic shock related to aprotinin induced by anti-aprotinin immunoglobulin G antibody alone; report of a case. Kyobu Geka 2007;60:69–71.

    PubMed  CAS  Google Scholar 

  94. Bergamaschini L, Mannucci PM, Federici AB, Coppola R, Guzzoni S, Agostoni A. Posttransfusion anaphylactic reactions in a patient with severe von Willebrand disease: role of complement and alloantibodies to von Willebrand factor. J Lab Clin Med 125, 348–355 (1995).

    PubMed  CAS  Google Scholar 

  95. Cheifetz A, Smedley M, Martin S, Reiter M, Leone G, Mayer L, et al. The incidence and management of infusion reactions to infliximab: a large center experience. Am J Gastroenterol 2003;98:1315–1324.

    Article  PubMed  CAS  Google Scholar 

  96. Vadas P, Gold M, Perelman B, Liss GM, Lack G, Blyth T, et al. Platelet-activating factor, PAF acetylhydrolase, and severe anaphylaxis. N Engl J Med 2008;358:28–35.

    Article  PubMed  CAS  Google Scholar 

  97. Till J, Francis JN, Nouri-Aria K, Durham SR. Mechanisms of immunotherapy. J Allergy Clin Immunol 2004;113:1025–1034, quiz 1035.

    Article  PubMed  CAS  Google Scholar 

  98. Punnonen J, Aversa G, Cocks BG, et al. Interleukin 13 induces interleukin 4-independent IgG4 and IgE synthesis and CD23 expression by human B cells. Proc Natl Acad Sci USA 1993;90:3730–3734.

    Article  PubMed  CAS  Google Scholar 

  99. van der Zee JS, van Swieten P, Aalberse RC. Inhibition of complement activation by IgG4 antibodies. Clin Exp Immunol 1986;64:415–422.

    PubMed  Google Scholar 

  100. Jeannin P, Lecoanet S, Delneste Y, Gauchat JF, Bonnefoy JY. IgE versus IgG4 production can be differentially regulated by IL-10. J Immunol 1998;160:3555–3561.

    PubMed  CAS  Google Scholar 

  101. Lochner M, Peduto L, Cherrier M, et al. In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORg(gamma)t+ T cells. J Exp Med 2008;205:1381–1393.

    Article  PubMed  CAS  Google Scholar 

  102. Hakim RM, Breillatt J, Lazarus JM, Port FK. Complement activation and hypersensitivity reactions to dialysis membranes. N Engl J Med 1984;311:878–882.

    Article  PubMed  CAS  Google Scholar 

  103. Suzuki Y, Uchida J, Tsuji H, et al. Acute changes in C3a and C5a in an anaphylactoid reaction in hemodialysis patients. Tohoku J Exp Med 1987;152:35–45.

    Article  PubMed  CAS  Google Scholar 

  104. Westaby S, Turner MW, Stark J. Complement activation and anaphylactoid response to protamine in a child after cardiopulmonary bypass. Br Heart J 1985;53:574–576.

    Article  PubMed  CAS  Google Scholar 

  105. Szebeni J. Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity. Toxicology 2005;216:106–121.

    Article  PubMed  CAS  Google Scholar 

  106. Hamad I, Hunter AC, Szebeni J, Moghimi SM. Poly(ethylene glycol)s generate complement activation products in human serum through increased alternative pathway turnover and a MASP-2-dependent process. Mol Immunol 2008;46:225–232.

    Article  PubMed  CAS  Google Scholar 

  107. Kemeny DM, Lessof MH, Patel S, Youlten LJ, Williams A, Lambourn E. IgG and IgE antibodies after immunotherapy with bee and wasp venom. Int Arch Allergy Appl Immunol 1989;88:247–249.

    Article  PubMed  CAS  Google Scholar 

  108. Hoffman DR, Wood CL, Hudson P. Demonstration of IgE and IgG antibodies against venoms in the blood of victims of fatal sting anaphylaxis. J Allergy Clin Immunol 1983;71:193–196.

    Article  PubMed  CAS  Google Scholar 

  109. van der Linden PW, Hack CE, Kerckhaert JA, Struyvenberg A, van der Zwan JC. Preliminary report: complement activation in wasp-sting anaphylaxis. Lancet 1990;336:904–906.

    Article  PubMed  Google Scholar 

  110. Vik H, Froysa A, Sonstevold A, Toft K, Stov PS, Ege T. Complement activation and histamine release following administration of roentgen contrast media. Acta Radiol Suppl 1995;399:83–89.

    PubMed  CAS  Google Scholar 

  111. Morcos SK. Review article: acute serious and fatal reactions to contrast media: our current understanding. Br J Radiol 2005;78:686–693.

    Article  PubMed  CAS  Google Scholar 

  112. Idee JM, Pines E, Prigent P, Corot C. Allergy-like reactions to iodinated contrast agents. A critical analysis. Fundam Clin Pharmacol 2005;19:263–281.

    Article  PubMed  CAS  Google Scholar 

  113. Bruhns P, Iannascoli B, England P, et al. Specificity and affinity of human Fcγ(gamma) receptors and their polymorphic variants for human IgG subclasses. Blood 2009;113:3716–3725.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a merit award from the US Department of Veterans Affairs and NIH grant R21AI079947. I thank my colleagues Marat Khodoun, Suzanne Morris, and Richard Strait, who performed much of the work described in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred D. Finkelman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Finkelman, F.D. (2011). IgE-Dependent and Independent Effector Mechanisms in Human and Murine Anaphylaxis. In: Castells, M. (eds) Anaphylaxis and Hypersensitivity Reactions. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-951-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-951-2_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-950-5

  • Online ISBN: 978-1-60327-951-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics