Skip to main content

What Antimicrobial Resistance Has Taught Us About Horizontal Gene Transfer

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 532))

Abstract

Horizontal gene transfer (HGT) has been responsible for the dissemination of numerous antimicrobial-resistance determinants throughout diverse bacterial species. The rapid and broad dissemination of resistance determinants by HGT, and subsequent selection for resistance imposed by the use of antimicrobials, threatens to undermine the usefulness of antimicrobials. However, vigilant surveillance of the emerging antimicrobial resistance in clinical settings and subsequent studies of resistant isolates create a powerful system for studying HGT and detecting rare events. Two of the most closely monitored phenotypes are resistance to \(\beta\)-lactams and resistance to fluoroquinolones. Studies of resistance to these antimicrobials have revealed that (1) transformation occurs between different species of bacteria including some recipient species that were not previously known to be competent for natural transformation; (2) transduction may be playing an important role in generating novel methicillin-resistant Staphylococcus aureus (MRSA) strains, although the details of transferring the SCCmec element are not yet fully understood; (3) Resistance genes are probably moving to plasmids from chromosomes more rapidly than in the past; and (4) Resistance genes are aggregating upon plasmids. The linkage of numerous resistance genes on individual plasmids may underlie the persistence of resistance to specific antimicrobials even when use of those antimicrobials is discontinued. Further studies of HGT and methods for controlling HGT may be necessary to maintain the usefulness of antimicrobials.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ligon, B. L. (2004) Sir Howard Walter Florey – the force behind the development of penicillin. Semin Pediatr Infect Dis 15, 109–14.

    Article  PubMed  Google Scholar 

  2. Ligon, B. L. (2004) Penicillin: its discovery and early development. Semin Pediatr Infect Dis 15, 52–7.

    Article  PubMed  Google Scholar 

  3. Wainwright, M. (2004) Hitler’s penicillin. Perspect Biol Med 47, 189–98.

    Article  PubMed  Google Scholar 

  4. Livermore, D. (2004) Can better prescribing turn the tide of resistance? Nat Rev Microbiol 2, 73–8.

    Article  CAS  PubMed  Google Scholar 

  5. Shlaes, D. M. (2003) The abandonment of antibacterials: why and wherefore? Curr Opin Pharmacol 3, 470–3.

    Article  CAS  PubMed  Google Scholar 

  6. Spellberg, B., Powers, J. H., Brass, E. P., Miller, L. G., Edwards, J. E., Jr. (2004) Trends in antimicrobial drug development: implications for the future. Clin Infect Dis 38, 1279–86.

    Article  CAS  PubMed  Google Scholar 

  7. Clancy, J., Dib-Hajj, F., Petitpas, J. W., Yuan, W. (1997) Cloning and characterization of a novel macrolide efflux gene, mreA, from Streptococcus agalactiae. Antimicrob Agents Chemother 41, 2719–23.

    CAS  PubMed  Google Scholar 

  8. Medeiros, A. A. (1997) Evolution and dissemination of beta-lactamases accelerated by generations of beta-lactam antibiotics. Clin Infect Dis 24, S19–45.

    CAS  PubMed  Google Scholar 

  9. Maple, P., Brumfitt, W., Hamilton-Miller, J. M. (1990) A review of the antimicrobial activity of the fluoroquinolones. J Chemother 2, 280–94.

    CAS  PubMed  Google Scholar 

  10. Pantosti, A., Sanchini, A., Monaco, M. (2007) Mechanisms of antibiotic resistance in Staphylococcus aureus. Future Microbiol 2, 323–34.

    Article  CAS  PubMed  Google Scholar 

  11. Shakil, S., Khan, R., Zarrilli, R., Khan, A. U. (2008) Aminoglycosides versus bacteria – a description of the action, resistance mechanism, and nosocomial battleground. J Biomed Sci 15, 5–14.

    Article  CAS  PubMed  Google Scholar 

  12. Roberts, M. C. (2008) Update on macrolide-lincosamide-streptogramin, ketolide, and oxazolidinone resistance genes. FEMS Microbiol Lett 282, 147–59.

    Article  CAS  PubMed  Google Scholar 

  13. Roberts, M. C. (2004) Resistance to macro- lide, lincosamide, streptogramin, ketolide, and oxazolidinone antibiotics. Mol Biotechnol 28, 47–62.

    Article  CAS  PubMed  Google Scholar 

  14. Roberts, M. C. (2004) Distribution of macrolide, lincosamide, streptogramin, ketolide and oxazolidinone (MLSKO) resistance genes in Gram-negative bacteria. Curr Drug Targets Infect Disord 4, 207–15.

    Article  CAS  PubMed  Google Scholar 

  15. Willems, R. J., Bonten, M. J. (2007) Glycopeptide-resistant enterococci: deciphering virulence, resistance and epidemicity. Curr Opin Infect Dis 20, 384–90.

    Article  CAS  PubMed  Google Scholar 

  16. Roberts, M. C. (2005) Update on acquired tetracycline resistance genes. FEMS Microbiol Lett 245, 195–203.

    Article  CAS  PubMed  Google Scholar 

  17. Hanssen, A. M., Ericson Sollid, J. U. (2006) SCCmec in staphylococci: genes on the move. FEMS Immunol Med Microbiol 46, 8–20.

    Article  CAS  PubMed  Google Scholar 

  18. Weldhagen, G. F. (2004) Integrons and beta-lactamases – a novel perspective on resistance. Int J Antimicrob Agents 23, 556–62.

    Article  CAS  PubMed  Google Scholar 

  19. Robicsek, A., Jacoby, G. A., Hooper, D. C. (2006) The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis 6, 629–40.

    Article  CAS  PubMed  Google Scholar 

  20. Livermore, D. M. (1996) Are all beta-lactams created equal? Scand J Infect Dis Suppl 101, 33–43.

    CAS  PubMed  Google Scholar 

  21. Lambert, P. A. (2005) Bacterial resistance to antibiotics: modified target sites. Adv Drug Deliv Rev 57, 1471–85.

    Article  CAS  PubMed  Google Scholar 

  22. Hakenbeck, R., Grebe, T., Zahner, D., Stock, J. B. (1999) beta-lactam resistance in Streptococcus pneumoniae: penicillin-binding proteins and non-penicillin-binding proteins. Mol Microbiol 33, 673–8.

    Article  CAS  PubMed  Google Scholar 

  23. Canton, R., Coque, T. M. (2006) The CTX-M beta-lactamase pandemic. Curr Opin Microbiol 9, 466–75.

    Article  CAS  PubMed  Google Scholar 

  24. Poole, K. (2004) Resistance to beta-lactam antibiotics. Cell Mol Life Sci 61, 2200–23.

    Article  CAS  PubMed  Google Scholar 

  25. Bhavnani, S. M., Hammel, J. P., Jones, R. N., Ambrose, P. G. (2005) Relationship between increased levofloxacin use and decreased susceptibility of Streptococcus pneumoniae in the United States. Diagn Microbiol Infect Dis 51, 31–7.

    Article  CAS  PubMed  Google Scholar 

  26. Tran, J. H., Jacoby, G. A. (2002) Mechanism of plasmid-mediated quinolone resistance. Proc Natl Acad Sci U S A 99, 5638–42.

    Article  CAS  PubMed  Google Scholar 

  27. Tran, J. H., Jacoby, G. A., Hooper, D. C. (2005) Interaction of the plasmid-encoded quinolone resistance protein Qnr with Escherichia coli DNA gyrase. Antimicrob Agents Chemother 49, 118–25.

    Article  CAS  PubMed  Google Scholar 

  28. Martin, J. F., Ullan, R. V., Casqueiro, J. (2004) Novel genes involved in cephalosporin biosynthesis: the three-component isopenicillin N epimerase system. Adv Biochem Eng Biotechnol 88, 91–109.

    CAS  PubMed  Google Scholar 

  29. Martin, J. F. (2000) Molecular control of expression of penicillin biosynthesis genes in fungi: regulatory proteins interact with a bidirectional promoter region. J Bacteriol 182, 2355–62.

    Article  CAS  PubMed  Google Scholar 

  30. Martin, J. F. (1998) New aspects of genes and enzymes for beta-lactam antibiotic biosynthesis. Appl Microbiol Biotechnol 50, 1–15.

    Article  CAS  PubMed  Google Scholar 

  31. Lopez, R. (2006) Pneumococcus: the sugar-coated bacteria. Int Microbiol 9, 179–90.

    CAS  PubMed  Google Scholar 

  32. Avery, O. T., Macleod, C. M., Mccarty, M. (2000) The Classic – Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus Type III (Reprinted). Clin Orthop Relat Res Suppl, 379, S4–8.

    Google Scholar 

  33. Desai, B. V., Morrison, D. A. (2006) An unstable competence-induced protein, CoiA, promotes processing of donor DNA after uptake during genetic transformation in Streptococcus pneumoniae. J Bacteriol 188, 5177–86.

    Article  CAS  PubMed  Google Scholar 

  34. Hakenbeck, R., Balmelle, N., Weber, B., Gardes, C., Keck, W., De Saizieu, A. (2001) Mosaic genes and mosaic chromosomes: intra- and interspecies genomic variation of Streptococcus pneumoniae. Infect Immun 69, 2477–86.

    Article  CAS  PubMed  Google Scholar 

  35. Hoffman-Roberts, H. L., Babcock, C. E., Mitropoulos, I. F. (2005) Investigational new drugs for the treatment of resistant pneumococcal infections. Expert Opin Investig Drugs 14, 973–95.

    Article  CAS  PubMed  Google Scholar 

  36. Passali, D., Lauriello, M., Passali, G. C., Passali, F. M., Bellussi, L. (2007) Group A streptococcus and its antibiotic resistance. Acta Otorhinolaryngol Ital 27, 27–32.

    CAS  PubMed  Google Scholar 

  37. Pletz, M. W., Mcgee, L., Van Beneden, C. A., Petit, S., Bardsley, M., Barlow, M., Klugman, K. P. (2006) Fluoroquinolone resistance in invasive Streptococcus pyogenes isolates due to spontaneous mutation and horizontal gene transfer. Antimicrob Agents Chemother 50, 943–8.

    Article  CAS  PubMed  Google Scholar 

  38. Yan, S. S., Fox, M. L., Holland, S. M., Stock, F., Gill, V. J., Fedorko, D. P. (2000) Resistance to multiple fluoroquinolones in a clinical isolate of Streptococcus pyogenes: identification of gyrA and parC and specification of point mutations associated with resistance. Antimicrob Agents Chemother 44, 3196–8.

    Article  CAS  PubMed  Google Scholar 

  39. Piddock, L. J. (1999) Mechanisms of fluoroquinolone resistance: an update 1994–1998. Drugs 58(Suppl 2), 11–8.

    Article  CAS  PubMed  Google Scholar 

  40. Richter, S. S., Diekema, D. J., Heilmann, K. P., Almer, L. S., Shortridge, V. D., Zeitler, R., Flamm, R. K., Doern, G. V. (2003) Fluoroquinolone resistance in Streptococcus pyogenes. Clin Infect Dis 36, 380–3.

    Article  CAS  PubMed  Google Scholar 

  41. Reinert, R. R., Lutticken, R., Al-Lahham, A. (2004) High-level fluoroquinolone resistance in a clinical Streptoccoccus pyogenes isolate in Germany. Clin Microbiol Infect 10, 659–62.

    Article  CAS  PubMed  Google Scholar 

  42. Koomey, M. (1998) Competence for natural transformation in Neisseria gonorrhoeae: a model system for studies of horizontal gene transfer. APMIS Suppl 84, 56–61.

    CAS  PubMed  Google Scholar 

  43. Hamilton, H. L., Dillard, J. P. (2006) Natural transformation of Neisseria gonorrhoeae: from DNA donation to homologous recombination. Mol Microbiol 59, 376–85.

    Article  CAS  PubMed  Google Scholar 

  44. Hamilton, H. L., Schwartz, K. J., Dillard, J. P. (2001) Insertion-duplication mutagenesis of neisseria: use in characterization of DNA transfer genes in the gonococcal genetic island. J Bacteriol 183, 4718–26.

    Article  CAS  PubMed  Google Scholar 

  45. Wang, S. A., Harvey, A. B., Conner, S. M., Zaidi, A. A., Knapp, J. S., Whittington, W. L., Del Rio, C., Judson, F. N., Holmes, K. K. (2007) Antimicrobial resistance for Neisseria gonorrhoeae in the United States, 1988 to 2003: the spread of fluoroquinolone resistance. Ann Intern Med 147, 81–8.

    PubMed  Google Scholar 

  46. Campos-Outcalt, D. (2007) Practice alert: CDC no longer recommends quinolones for treatment of gonorrhea. J Fam Pract 56, 554–8.

    PubMed  Google Scholar 

  47. Yokoi, S., Deguchi, T., Ozawa, T., Yasuda, M., Ito, S., Kubota, Y., Tamaki, M., Maeda, S. (2007) Threat to cefixime treatment for gonorrhea. Emerg Infect Dis 13, 1275–7.

    PubMed  Google Scholar 

  48. Spratt, B. G., Bowler, L. D., Zhang, Q. Y., Zhou, J., Smith, J. M. (1992) Role of interspecies transfer of chromosomal genes in the evolution of penicillin resistance in pathogenic and commensal Neisseria species. J Mol Evol 34, 115–25.

    Article  CAS  PubMed  Google Scholar 

  49. Takahata, S., Senju, N., Osaki, Y., Yoshida, T., Ida, T. (2006) Amino acid substitutions in mosaic penicillin-binding protein 2 associated with reduced susceptibility to cefixime in clinical isolates of Neisseria gonorrhoeae. Antimicrob Agents Chemother 50, 3638–45.

    Article  CAS  PubMed  Google Scholar 

  50. Bowler, L. D., Zhang, Q. Y., Riou, J. Y., Spratt, B. G. (1994) Interspecies recombination between the penA genes of Neisseria meningitidis and commensal Neisseria species during the emergence of penicillin resistance in N. meningitidis: natural events and laboratory simulation. J Bacteriol 176, 333–7.

    CAS  PubMed  Google Scholar 

  51. Enright, M. C. (2003) The evolution of a resistant pathogen – the case of MRSA. Curr Opin Pharmacol 3, 474–9.

    Article  CAS  PubMed  Google Scholar 

  52. Hartman, B. J., Tomasz, A. (1984) Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus. J Bacteriol 158, 513–6.

    CAS  PubMed  Google Scholar 

  53. Brown, D. F., Reynolds, P. E. (1980) Intrinsic resistance to beta-lactam antibiotics in Staphylococcus aureus. FEBS Lett 122, 275–8.

    Article  CAS  PubMed  Google Scholar 

  54. Deurenberg, R. H., Vink, C., Kalenic, S., Friedrich, A. W., Bruggeman, C. A., Stobberingh, E. E. (2007) The molecular evolution of methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect 13, 222–35.

    Article  CAS  PubMed  Google Scholar 

  55. Katayama, Y., Takeuchi, F., Ito, T., Ma, X. X., Ui-Mizutani, Y., Kobayashi, I., Hiramatsu, K. (2003) Identification in methicillin-susceptible Staphylococcus hominis of an active primordial mobile genetic element for the staphylococcal cassette chromosome mec of methicillin-resistant Staphylococcus aureus. J Bacteriol 185, 2711–22.

    Article  CAS  PubMed  Google Scholar 

  56. Mongkolrattanothai, K., Boyle, S., Murphy, T. V., Daum, R. S. (2004) Novel non-mecA-containing staphylococcal chromosomal cassette composite island containing pbp4 and tagF genes in a commensal staphylococcal species: a possible reservoir for antibiotic resistance islands in Staphylococcus aureus. Antimicrob Agents Chemother 48, 1823–36.

    Article  CAS  PubMed  Google Scholar 

  57. Fuda, C. C., Fisher, J. F., Mobashery, S. (2005) Beta-lactam resistance in Staphylococcus aureus: the adaptive resistance of a plastic genome. Cell Mol Life Sci 62, 2617–33.

    Article  CAS  PubMed  Google Scholar 

  58. Wu, S. W., De Lencastre, H., Tomasz, A. (2001) Recruitment of the mecA gene homologue of Staphylococcus sciuri into a resistance determinant and expression of the resistant phenotype in Staphylococcus aureus. J Bacteriol 183, 2417–24.

    Article  CAS  PubMed  Google Scholar 

  59. Couto, I., Wu, S. W., Tomasz, A., De Lencastre, H. (2003) Development of methicillin resistance in clinical isolates of Staphylococcus sciuri by transcriptional activation of the mecA homologue native to species. J Bacteriol 185, 645–53.

    Article  CAS  PubMed  Google Scholar 

  60. Lindsay, J. A., Holden, M. T. (2006) Understanding the rise of the superbug: investigation of the evolution and genomic variation of Staphylococcus aureus. Funct Integr Genomics 6, 186–201.

    Article  CAS  PubMed  Google Scholar 

  61. Enright, M. C., Robinson, D. A., Randle, G., Feil, E. J., Grundmann, H., Spratt, B. G. (2002) The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc Natl Acad Sci U S A 99, 7687–92.

    Article  CAS  PubMed  Google Scholar 

  62. Robinson, D. A., Enright, M. C. (2003) Evolutionary models of the emergence of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 47, 3926–34.

    Article  CAS  PubMed  Google Scholar 

  63. Iandolo, J. J., Worrell, V., Groicher, K. H., Qian, Y., Tian, R., Kenton, S., Dorman, A., Ji, H., Lin, S., Loh, P., Qi, S., Zhu, H., Roe, B. A. (2002) Comparative analysis of the genomes of the temperate bacteriophages phi 11, phi 12 and phi 13 of Staphylococcus aureus 8325. Gene 289, 109–18.

    Article  CAS  PubMed  Google Scholar 

  64. Melles, D. C., Gorkink, R. F., Boelens, H. A., Snijders, S. V., Peeters, J. K., Moorhouse, M. J., Van Der Spek, P. J., Van Leeuwen, W. B., Simons, G., Verbrugh, H. A., Van Belkum, A. (2004) Natural population dynamics and expansion of pathogenic clones of Staphylococcus aureus. J Clin Invest 114, 1732–40.

    CAS  PubMed  Google Scholar 

  65. Schaefler, S. (1982) Bacteriophage-mediated acquisition of antibiotic resistance by Staphylococcus aureus type 88. Antimicrob Agents Chemother 21, 460–7.

    CAS  PubMed  Google Scholar 

  66. Barlow, M., Hall, B. G. (2002) Phylogenetic analysis shows that the OXA \(\beta\)-lactamase genes have been on plasmids for millions of years. J Mol Evol 55, 314–21.

    Article  CAS  PubMed  Google Scholar 

  67. Barlow, M., Reik, R. A., Jacobs, S. D., Medina, M., Meyer, M. P., Mcgowan, J. E., Jr., Tenover, F. C. (2008) High rate of mobilization for blaCTX-Ms. Emerg Infect Dis 14, 423–8.

    Article  CAS  PubMed  Google Scholar 

  68. Rodriguez, M. M., Power, P., Radice, M., Vay, C., Famiglietti, A., Galleni, M., Ayala, J. A., Gutkind, G. (2004) Chromosome-encoded CTX-M-3 from Kluyvera ascorbata: a possible origin of plasmid-borne CTX-M-1-derived cefotaximases. Antimicrob Agents Chemother 48, 4895–7.

    Article  CAS  PubMed  Google Scholar 

  69. Boyd, D. A., Olson, A. B., Silverman M., Mcgeer, A., Willey, B. M., Pong-Porter, V., Daneman, N., Mulvey, M. R. (2004) Identification of a progenitor of the CTX-M-9 group of extended spectrum beta-lactamases from Kluyvera spp. isolated in Guyana. In 44th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2004 American Society for Microbiology, City.

    Google Scholar 

  70. Bonnet, R. (2004) Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother 48, 1–14.

    Article  CAS  PubMed  Google Scholar 

  71. Poirel, L., Kampfer, P., Nordmann, P. (2002) Chromosome-encoded Ambler class A beta-lactamase of Kluyvera georgiana, a probable progenitor of a subgroup of CTX-M extended-spectrum beta-lactamases. Antimicrob Agents Chemother 46, 4038–40.

    Article  CAS  PubMed  Google Scholar 

  72. Farmer, J. J., 3rd, Fanning, G. R., Huntley-Carter, G. P., Holmes, B., Hickman, F. W., Richard, C., Brenner, D. J. (1981) Kluyvera, a new (redefined) genus in the family Enterobacteriaceae: identification of Kluyvera ascorbata sp. nov. and Kluyvera cryocrescens sp. nov. in clinical specimens. J Clin Microbiol 13, 919–33.

    PubMed  Google Scholar 

  73. Hall, R. M. (2007) Antibiotic resistance gene cluster of pAPEC-O1-R. Antimicrob Agents Chemother 51, 3461–2.

    Article  CAS  PubMed  Google Scholar 

  74. Ktari, S., Arlet, G., Mnif, B., Gautier, V., Mahjoubi, F., Ben Jmeaa, M., Bouaziz, M., Hammami, A. (2006) Emergence of multidrug-resistant Klebsiella pneumoniae isolates producing VIM-4 metallo-beta-lactamase, CTX-M-15 extended-spectrum beta-lactamase, and CMY-4 AmpC beta-lactamase in a Tunisian university hospital. Antimicrob Agents Chemother 50, 4198–201.

    Article  CAS  PubMed  Google Scholar 

  75. Lawrence, J. (1999) Selfish operons: the evolutionary impact of gene clustering in prokaryotes and eukaryotes. Curr Opin Genet Dev 9, 642–8.

    Article  CAS  PubMed  Google Scholar 

  76. Lawrence, J. G. (2000) Clustering of antibiotic resistance genes: beyond the selfish operon. ASM News 66, 281–6.

    Google Scholar 

  77. Gould, I. M. (2002) Antibiotic policies and control of resistance. Curr Opin Infect Dis 15, 395–400.

    PubMed  Google Scholar 

  78. Austin, D. J., Kristinsson, K. G., Anderson, R. M. (1999) The relationship between the volume of antimicrobial consumption in human communities and the frequency of resistance. Proc Natl Acad Sci U S A 96, 1152–6.

    Article  CAS  PubMed  Google Scholar 

  79. Giamarellou, H., Antoniadou, A. (1997) The effect of monitoring of antibiotic use on decreasing antibiotic resistance in the hospital. Ciba Found Symp 207, 76–86.

    CAS  PubMed  Google Scholar 

  80. Monroe, S., Polk, R. (2000) Antimicrobial use and bacterial resistance. Curr Opin Microbiol 3, 496–501.

    Article  CAS  PubMed  Google Scholar 

  81. Gerding, D. N. (2000) Antimicrobial cycling: lessons learned from the aminoglycoside experience. Infect Control Hosp Epidemiol 21, S12–7.

    Article  CAS  PubMed  Google Scholar 

  82. Moss, W. J., Beers, M. C., Johnson, E., Nichols, D. G., Perl, T. M., Dick, J. D., Veltri, M. A., Willoughby, R. E., Jr. (2002) Pilot study of antibiotic cycling in a pediatric intensive care unit. Crit Care Med 30, 1877–82.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Barlow, M. (2009). What Antimicrobial Resistance Has Taught Us About Horizontal Gene Transfer. In: Gogarten, M.B., Gogarten, J.P., Olendzenski, L.C. (eds) Horizontal Gene Transfer. Methods in Molecular Biology, vol 532. Humana Press. https://doi.org/10.1007/978-1-60327-853-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-853-9_23

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-852-2

  • Online ISBN: 978-1-60327-853-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics