Skip to main content

The Role of Dietary Fat in Insulin Resistance and Type 2 Diabetes

  • Chapter
  • First Online:
Book cover Modern Dietary Fat Intakes in Disease Promotion

Part of the book series: Nutrition and Health ((NH))

Key Points

• The role of dietary fat in health and disease is controversial as fatty acids act as signaling molecules in a variety of metabolic pathways and dietary fat has a role in both the etiology and prevention of insulin resistance and type 2 diabetes.

• Another hypothesis is that excessive caloric intake of any kind, vs. any specific dietary component, explains the strong relationship between obesity and these metabolic disorders.

• Dietary fat recommendations geared toward the prevention and treatment of insulin resistance and type 2 diabetes should be evidence-based.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Forman BM, Chen J, Evans RM. Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta. Proc Natl Acad Sci USA 1997; 94: 4312–4317.

    Article  PubMed  CAS  Google Scholar 

  2. Sarkkinen ES, Schwab US, Niskanen L. The effects of monounsaturated-fat enriched diet and polyunsaturated-fat enriched diet on lipid and glucose metabolism in subjects with impaired glucose tolerance. Eur J Clin Nutr 1996; 50: 592–598.

    PubMed  CAS  Google Scholar 

  3. Kelley DS. Modulation of human immune and inflammatory responses by dietary fatty acids. Nutrition 2001; 17: 669–673.

    Article  PubMed  CAS  Google Scholar 

  4. Rose DP, Connolly JM, Rayburn J, Coleman M. Influence of diets containing eicosapentaenoic or docosahexaenoic acid on growth and metastasis of breast cancer cells in nude mice. J Natl Cancer Inst 1995; 87: 587–592.

    Article  PubMed  CAS  Google Scholar 

  5. Storlien L, Pan D, Kriketos A et al. Skeletal muscle membrane lipids and insulin resistance. Lipids 1996; 31: S261–S265.

    Article  PubMed  CAS  Google Scholar 

  6. Ginsberg BH, Brown TJ, Simon I, Spector AA. Effect of the membrane lipid environment of the properties of insulin receptors. Diabetes 1981; 30: 773–780.

    Article  PubMed  CAS  Google Scholar 

  7. Prentki M, Madiraju SRM. Glycerolipid metabolism and signaling in health and disease. Endocr Rev 2008; 29: 647–676.

    Article  PubMed  CAS  Google Scholar 

  8. Frangioudakis G, Ye J-M, Cooney GJ. Both saturated and n-6 polyunsaturated fat diets reduce phosphorylation of insulin receptor substrate-1 and protein kinase B in muscle during the initial stages of in vivo insulin stimulation. Endocrinology 2005; 146: 5596–5603.

    Article  PubMed  CAS  Google Scholar 

  9. Taouis M, Dagou C, Ster C, Durand G, Pinault M, Delarue J. N-3 polyunsaturated fatty acids prevent the defect of insulin receptor signaling in muscle. Am J Physiol Endocrinol Metab 2002; 282: E664–E671.

    PubMed  CAS  Google Scholar 

  10. Briscoe CP, Tadayyon M, Andrews JL et al. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem 2003; 278: 11303–11311.

    Article  PubMed  CAS  Google Scholar 

  11. Rutter GA. Insulin secretion: fatty acid signalling via serpentine receptors. Curr Biol 2003; 13: R403–R405.

    Article  PubMed  CAS  Google Scholar 

  12. Tsujimoto G. GPR 120 and receptors for free fatty acids. Regul Pept 2006; 135: 110.

    Google Scholar 

  13. Steneberg P, Rubins N, Bartoov-Shifman R, Walker MD, Edlund H. The FFA receptor GPR40 links hyperinsulinemia, hepatic steatosis, and impaired glucose homeostasis in mouse. Cell Metab 2005; 1: 245–258.

    Article  PubMed  CAS  Google Scholar 

  14. Morishita M, Tanaka T, Shida T, Takayama K. Usefulness of colon targeted DHA and EPA as novel diabetes medications that promote intrinsic GLP-1 secretion. J Control Release 2008; 132: 99–104.

    Article  PubMed  CAS  Google Scholar 

  15. Keller H, Dreyer C, Medin J, Mahfoudi A, Ozato K, Wahli W. Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers. Proc Natl Acad Sci USA 1993; 90: 2160–2164.

    Article  PubMed  CAS  Google Scholar 

  16. Hegarty BD, Furler SM, Oakes ND, Kraegen EW, Cooney GJ. Peroxisome proliferator-activated receptor (PPAR) activation induces tissue-specific effects on fatty acid uptake and metabolism in vivo—a study using the novel PPAR{alpha}/{gamma} agonist tesaglitazar. Endocrinology 2004; 145: 3158–3164.

    Article  PubMed  CAS  Google Scholar 

  17. Bays H, Mandarino L, DeFronzo RA. Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of type 2 diabetes mellitus: peroxisomal proliferator-activated receptor agonists provide a rational therapeutic approach. J Clin Endocrinol Metab 2004; 89: 463–478.

    Article  PubMed  CAS  Google Scholar 

  18. Reaven GM, Hollenbeck C, Jeng CY, Wu MS, Chen YDI. Measurement of plasma glucose, free fatty acid, lactate and insulin for 24-h in patients with NIDDM. Diabetes 1988; 37: 1020–1024.

    Article  PubMed  CAS  Google Scholar 

  19. Jiao K, Liu H, Chen J, Tian D, Hou J, Kaye AD. Roles of plasma interleukin-6 and tumor necrosis factor-[alpha] and FFA and TG in the development of insulin resistance induced by high-fat diet. Cytokine 2008; 42: 161–169.

    Article  PubMed  CAS  Google Scholar 

  20. Hegarty BD, Furler SM, Ye J, Cooney GJ, Kraegen EW. The role of intramuscular lipid in insulin resistance. Acta Physiol 2003; 178(4): 373–383.

    Article  CAS  Google Scholar 

  21. Greco AV, Mingrone G, Giancaterini A et al. Insulin resistance in morbid obesity. Diabetes 2002; 51: 144–151.

    Article  PubMed  CAS  Google Scholar 

  22. de Wilde J, Mohren R, van den Berg S et al. Short-term high fat-feeding results in morphological and metabolic adaptations in the skeletal muscle of C57BL/6 J mice. Physiol Genomics 2008; 32: 360–369.

    PubMed  Google Scholar 

  23. Storlien LH, Jenkins AB, Chisholm DJ, Pascoe WS, Khouri S, Kraegen EW. Influence of dietary fat composition on development of insulin resistance in rats. Relationship to muscle triglyceride and omega-3 fatty acids in muscle phospholipid. Diabetes 1991; 40: 280–289.

    Article  PubMed  CAS  Google Scholar 

  24. Lee JS, Pinnamaneni SK, Eo SJ et al. Saturated, but not n-6 polyunsaturated, fatty acids induce insulin resistance: role of intramuscular accumulation of lipid metabolites. J Appl Physiol 2006; 100: 1467–1474.

    Article  PubMed  CAS  Google Scholar 

  25. Rosen P, Nawroth PP, King G, Moller W, Tritschler HJ, Packer L. The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a Congress Series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society. Diabetes Metab Res Rev 2001; 17: 189–212.

    Article  PubMed  CAS  Google Scholar 

  26. Milagro FI, Campion J, Martinez JA. Weight gain induced by high-fat feeding involves increased liver oxidative stress. Obesity 2006; 14: 1118–1123.

    Article  PubMed  CAS  Google Scholar 

  27. Devaraj S, Wang-Polagruto J, Polagruto J, Keen CL, Jialal I. High-fat, energy-dense, fast-food-style breakfast results in an increase in oxidative stress in metabolic syndrome. Metab Clin Exp 2008; 57: 867–870.

    Article  PubMed  CAS  Google Scholar 

  28. Yang R-L, Li W, Shi Y-H, Le G-W. Lipoic acid prevents high-fat diet-induced dyslipidemia and oxidative stress: a microarray analysis. Nutrition 2008; 24: 582–588.

    Article  PubMed  Google Scholar 

  29. Slim RM, Toborek M, Watkins BA, Boissonneault GA, Hennig B. Susceptibility to hepatic oxidative stress in rabbits fed different animal and plant fats. J Am Coll Nutr 1996; 15: 289–294.

    PubMed  CAS  Google Scholar 

  30. Ritov VB, Menshikova EV, He J, Ferrell RE, Goodpaster BH, Kelley DE. Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes 2005; 54: 8–14.

    Article  PubMed  CAS  Google Scholar 

  31. Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science 2005; 307: 384–387.

    Article  PubMed  CAS  Google Scholar 

  32. Bruce CR, Hoy AJ, Turner N et al. Overexpression of carnitine palmitoyltransferase-1 in skeletal muscle is sufficient to enhance fatty acid oxidation and improve high-fat diet-induced insulin resistance. Diabetes 2009; 58: 550–558.

    Article  PubMed  CAS  Google Scholar 

  33. Hancock CR, Han DH, Chen M et al. High-fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc Natl Acad Sci USA 2008; 105: 7815–7820.

    Article  PubMed  CAS  Google Scholar 

  34. Lovejoy JC. The influence of dietary fat on insulin resistance. Curr Diab Rep 2002; 2: 435–440.

    Article  PubMed  Google Scholar 

  35. Mayer EJ, Newman B, Quesenberry CP, Selby JV. Usual dietary fat intake and insulin concentrations in healthy women twins. Diabetes Care 1993; 16: 1459–1469.

    Article  PubMed  CAS  Google Scholar 

  36. Marshall JA, Bessesen DH, Hamman RF. High saturated fat and low starch and fibre are associated with hyperinsulinaemia in a non-diabetic population: the San Luis valley diabetes study. Diabetologia 1997; 40: 430–438.

    Article  PubMed  CAS  Google Scholar 

  37. Feskens EJM, Loeber JG, Kromhout D. Diet and physical activity as determinants of hyperinsulinemia—the Zutphen elderly study. Am J Epidemiol 1994; 140: 350–360.

    PubMed  CAS  Google Scholar 

  38. van Dam RM, Stampfer M, Willett WC, Hu FB, Rimm EB. Dietary fat and meat intake in relation to risk of type 2 diabetes in men. Diabetes Care 2002; 25: 417–424.

    Article  PubMed  Google Scholar 

  39. Harding A-H, Sargeant LA, Welch A et al. Fat consumption and HbA1c levels. Diabetes Care 2001; 24: 1911–1916.

    Article  PubMed  CAS  Google Scholar 

  40. Feskens EJM, Virtanen SM, Rasanen L et al. Dietary factors determining diabetes and impaired glucose-tolerance – a 20 year follow-up of the Finnish and Dutch cohorts of the 7-countries study. Diabetes Care 1995; 18: 1104–1112.

    Article  PubMed  CAS  Google Scholar 

  41. Rasmussen BM, Vessby B, Uusitupa M et al. Effects of dietary saturated, monounsaturated, and n-3 fatty acids on blood pressure in healthy subjects. Am J Clin Nutr 2006; 83: 221–226.

    PubMed  CAS  Google Scholar 

  42. Vessby B, Uusitupa M, Hermansen K et al. Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women: the KANWU study. Diabetologia 2001; 44: 312–319.

    Article  PubMed  CAS  Google Scholar 

  43. Paniagua JA, de la Sacristana AG, Romero I et al. Monounsaturated fat-rich diet prevents central body fat distribution and decreases postprandial adiponectin expression induced by a carbohydrate-rich diet in insulin-resistant subjects. Diabetes Care 2007; 30: 1717–1723.

    Article  PubMed  CAS  Google Scholar 

  44. MayerDavis EJ, Monaco JH, Hoen HM et al. Dietary fat and insulin sensitivity in a triethnic population: the role of obesity. The insulin resistance atherosclerosis study (IRAS). Am J Clin Nutr 1997; 65: 79–87.

    CAS  Google Scholar 

  45. Maron DJ, Fair JM, Haskell WL. Saturated fat intake and insulin resistance in men with coronary-artery disease. Circulation 1991; 84: 2020–2027.

    Article  PubMed  CAS  Google Scholar 

  46. Marshall JA, Hoag S, Shetterly S, Hamman RF. Dietary fat predicts conversion from impaired glucose-tolerance to NIDDM—the San-Luis valley diabetes study. Diabetes Care 1994; 17: 50–56.

    Article  PubMed  CAS  Google Scholar 

  47. Mozaffarian D, Clarke R. Quantitative effects on cardiovascular risk factors and coronary heart disease risk of replacing partially hydrogenated vegetable oils with other fats and oils. Eur J Clin Nutr 2009; 63: S22–S33.

    Article  PubMed  CAS  Google Scholar 

  48. Hu FB, Manson JE, Stampfer MJ et al. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med 2001; 345: 790–797.

    Article  PubMed  CAS  Google Scholar 

  49. Christiansen E, Schnider S, Palmvig B, Tauber-Lassen E, Pedersen O. Intake of a diet high in trans monounsaturated fatty acids or saturated fatty acids. Effects on postprandial insulinemia and glycemia in obese patients with NIDDM. Diabetes Care 1997; 20: 881–887.

    Article  PubMed  CAS  Google Scholar 

  50. Vega-Lopez S, Ausman LM, Jalbert SM, Erkkila AT, Lichtenstein AH. Palm and partially hydrogenated soybean oils adversely alter lipoprotein profiles compared with soybean and canola oils in moderately hyperlipidemic subjects. Am J Clin Nutr 2006; 84: 54–62.

    PubMed  CAS  Google Scholar 

  51. Lefevre M, Lovejoy JC, Smith SR et al. Comparison of the acute response to meals enriched with cis- or trans-fatty acids on glucose and lipids in overweight individuals with differing FABP2 genotypes. Metab Clin Exp 2005; 54: 1652–1658.

    Article  PubMed  CAS  Google Scholar 

  52. Louheranta AM, Schwab US, Sarkkinen ES et al. Insulin sensitivity after a reduced-fat diet and a monoene-enriched diet in subjects with elevated serum cholesterol and triglyceride concentrations. Nutr Metab Cardiovasc Dis 2000; 10: 177–187.

    PubMed  CAS  Google Scholar 

  53. Fedor D, Kelley DS. Prevention of insulin resistance by n-3 polyunsaturated fatty acids. Curr Opin Clin Nutr Metab Care 2009; 12: 138–146.

    Article  PubMed  CAS  Google Scholar 

  54. Willett WC, Leibel RL. Dietary fat is not a major determinant of body fat. Am J Med 2002; 113: 47–59.

    Article  Google Scholar 

  55. Kavanagh K, Jones KL, Sawyer J et al. Trans fat diet induces abdominal obesity and changes in insulin sensitivity in monkeys. Obesity 2007; 15: 1675–1684.

    Article  PubMed  CAS  Google Scholar 

  56. Koh-Banerjee P, Chu N-F, Spiegelman D et al. Prospective study of the association of changes in dietary intake, physical activity, alcohol consumption, and smoking with 9-y gain in waist circumference among 16,587 US men. Am J Clin Nutr 2003; 78: 719–727.

    PubMed  CAS  Google Scholar 

  57. Field AE, Willett WC, Lissner L, Colditz GA. Dietary fat and weight gain among women in the nurses/health study[ast]. Obesity 2007; 15: 967–976.

    Article  PubMed  Google Scholar 

  58. Kritchevsky D. History of recommendations to the public about dietary fat. J Nutr 1998; 128: 449S–452S.

    PubMed  CAS  Google Scholar 

  59. Erkkila A, de Mello VDF, Riserus U, Laaksonen DE. Dietary fatty acids and cardiovascular disease: an epidemiological approach. Prog Lipid Res 2008; 47: 172–187.

    Article  PubMed  Google Scholar 

  60. Keys A, Anderson JT, Grande F. Prediction of serum cholesterol responses of man to changes in fats in the diet. Lancet 1957; 2: 959–966.

    Article  Google Scholar 

  61. Mensink RP, Katan MB. Effect of dietary fatty acids on serum lipids and lipoproteins. A meta-analysis of 27 trials. Arterioscler Thromb Vasc Biol 1992; 12: 911–919.

    Article  CAS  Google Scholar 

  62. Micha R, Mozaffarian D. Trans fatty acids: effects on cardiometabolic health and implications for policy. Prostaglandins Leukot Essent Fatty Acids 2008; 79: 147–152.

    Article  PubMed  CAS  Google Scholar 

  63. American Dietetic Association (2008) Evidence-based nutrition practice guideline on disorders of lipid metabolism http://www.adaevidencelibrary.com. Accessed June 27, 2009.

  64. Kris-Etherton PM, Harris WS, Appel LJ, for the Nutrition Committee. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 2002; 106: 2747–2757.

    Article  PubMed  Google Scholar 

  65. Harris WS, Mozaffarian D, Rimm E et al. Omega-6 fatty acids and risk for cardiovascular disease: a science advisory from the American Heart Association Nutrition Subcommittee of the council on nutrition, physical activity, and metabolism; council on cardiovascular nursing; and council on epidemiology and prevention. Circulation 2009; 119: 902–907.

    Article  PubMed  Google Scholar 

  66. Grynberg A. Hypertension prevention: from nutrients to (fortified) foods to dietary patterns. Focus on fatty acids. J Hum Hypertens 2005; 19: S25–S33.

    Article  PubMed  CAS  Google Scholar 

  67. Kimura N, Keys A. Coronary heart disease in seven countries. X: Rural Southern Japan. Circulation 1970; 41: I-101–I-102.

    Article  CAS  Google Scholar 

  68. Kushi LH, Lew RA, Stare FJ et al. Diet and 20-year mortality from coronary heart disease—the Ireland–Boston diet heart study. N Engl J Med 1985; 312: 811–818.

    Article  PubMed  CAS  Google Scholar 

  69. de Lorgeril M, Salen P, Martin JL, Monjaud I, Delaye J, Mamelle N. Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction—final report of the Lyon diet heart study. Circulation 1999; 99: 779–785.

    Article  PubMed  Google Scholar 

  70. American Dietetic Association (2008) Evidence-based Nutrition Practice Guideline on Hypertension http://www.adaevidencelibrary.com. Accessed June 27, 2009.

  71. Dokholyan RS, Albert CM, Appel LJ, Cook NR, Whelton PK, Hennekens CH. Trial of omega-3 fatty acids for prevention of hypertension. Am J Cardiol 2004; 93: 1041–1043.

    Article  PubMed  CAS  Google Scholar 

  72. Dyerberg J, Eskesen DC, Andersen PW et al. Effects of trans- and n-3 unsaturated fatty acids on cardiovascular risk markers in healthy males. An 8 weeks dietary intervention study. Eur J Clin Nutr 2004; 58: 1062–1070.

    Article  PubMed  CAS  Google Scholar 

  73. Harrison RA, Sagara M, Rajpura A et al. Can foods with added soya-protein or fish-oil reduce risk factors for coronary disease? A factorial randomised controlled trial. Nutr Metab Cardiovasc Dis 2004; 14(6): 344–350.

    Article  PubMed  CAS  Google Scholar 

  74. Kriketos AD, Robertson RM, Sharp TA et al. Role of weight loss and polyunsaturated fatty acids in improving metabolic fitness in moderately obese, moderately hypertensive subjects. J Hypertens 2001; 19: 1745–1754.

    Article  PubMed  CAS  Google Scholar 

  75. Nestel P, Shige H, Pomeroy S, Cehun M, Abbey M, Raederstorff D. The n-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid increase systemic arterial compliance in humans. Am J Clin Nutr 2002; 76: 326–330.

    PubMed  CAS  Google Scholar 

  76. Woodman RJ, Mori TA, Burke V, Puddey IB, Watts GF, Beilin LJ. Effects of purified eicosapentaenoic and docosahexaenoic acids on glycemic control, blood pressure, and serum lipids in type 2 diabetic patients with treated hypertension. Am J Clin Nutr 2002; 76: 1007–1015.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Betsy Dokken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dokken, B., Boucher, J. (2010). The Role of Dietary Fat in Insulin Resistance and Type 2 Diabetes. In: De Meester, F., Zibadi, S., Watson, R. (eds) Modern Dietary Fat Intakes in Disease Promotion. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-571-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-571-2_23

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-570-5

  • Online ISBN: 978-1-60327-571-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics