Skip to main content

Electrochemical Biosensor Technology: Application to Pesticide Detection

  • Protocol
Biosensors and Biodetection

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 504))

Summary

In recent years, electrochemical sensors and biosensors are becoming an accepted part of analytical chemistry since they satisfy the expanding need for rapid and reliable measurements.

An area in which electrochemical biosensors perhaps show the greatest diversity and potential for development involves the measurement of environmentally significant parameters. The increasing number of pollutants in the environment calls for fast and cost-effective analytical requirements. In this context, biosensors appear as suitable alternative or complementary analytical tools.

The aim of this chapter is to review some basic concept concerning the electrochemical biosensors and to illustrate a protocol for the detection of environmental organic pollutants on the basis of electrochemical biosensors. In particular, a method based on the inhibition of the enzyme acetylcholinesterase (AChE) for the detection of organophosphorus and carbamate pesticides will be described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eggins B.R., (2002) Chemical Sensors and Biosensors. Wiley, UK

    Google Scholar 

  2. Invitski D., Abdel-Hamid I., Atanasov P., Wilkins E., Striker S., (2000) Application of electrochemical biosensors for detection of food pathogenic bacteria. Electroanalysis, 12(5), 317–325

    Article  Google Scholar 

  3. Kellner R., Mermet J.M., Otto M., Valcar-cel M., Widmer H.M., (2004) Biosensors, in Analytical Chemistry: A modern Approach to Analytical Science, Second Edition, Wiley-VCH Verlag GmbH & Co, pp. 1078–1109

    Google Scholar 

  4. Cass A.E.G. (ed.) (1990) Biosensors A practical Approach. Oxford University Press, NY

    Google Scholar 

  5. Canh T.M., (1993) Biosensors. Chapman & Hall, London, UK

    Google Scholar 

  6. Clark L.C., Lyons C., (1962) Electrode systems for continuous monitoring cardiovascular surgery. Ann. N. Y. Acad. Sci., 102, 29–45

    Article  CAS  PubMed  Google Scholar 

  7. Alvarez-Icaza M., Bilitewski U., (1993) Mass-production of biosensors. Anal. Chem., 65, 525A–533A

    Article  CAS  Google Scholar 

  8. Palchetti I., Laschi S., Mascini M., (2005) Miniaturised stripping-based carbon modified sensor for in field analysis of heavy metals. Analytica Chimica Acta, 530, 61–67

    Article  CAS  Google Scholar 

  9. Laschi S., Palchetti I., Marrazza G., Mascini M., (2006) Development of disposable low density screen-printed electrode arrays for simultaneous electrochemical measurements of the hybridisation reaction. J. Electroanal. Chem., 593, 211–218

    Article  CAS  Google Scholar 

  10. Farabullini F., Lucarelli F., Palchetti I., Mar-razza G., Mascini M., (2007) Disposable electrochemical genosensor for the simultaneous analysis of different bacterial food contaminants. Biosens. Bioelectron., 22, 1544–1549

    Article  CAS  PubMed  Google Scholar 

  11. Wang J., (1994) Decentralized electrochemical monitoring of trace metals: from disposable strips to remote electrodes. Analyst, 119, 763–766

    Article  CAS  Google Scholar 

  12. Centi S., Silva E., Laschi S., Palchetti I., Mascini M., (2007) Polychlorinated biphenyls (PCBs) detection in milk samples by an electrochemical magneto-immunosensor (EMI) coupled to solid phase extraction (SPE) and disposable low density arrays. Analytica Chimica Acta, 594, 9–16

    Article  CAS  PubMed  Google Scholar 

  13. Mascini M., Palchetti I., (2005) Enzyme Electrodes, Ion — Selective Electrodes. in Encyclopedia of Analytical Science, 4. Elsevier, Amsterdam, pp. 520–526

    Chapter  Google Scholar 

  14. Rodriguez-Mozaz S., Lopez de Alda M.J., Marco M.-P., Barcelo D., (2005) Biosensors for environmental monitorino A global perspective. Talanta, 65, 291–297

    CAS  PubMed  Google Scholar 

  15. Rogers K.R., (2006) Recent advances in biosensor techniques for environmental monitoring. Anal. Chim Acta, 568, 222–231

    Article  CAS  PubMed  Google Scholar 

  16. Sanchez-Santed F., Canada F., Flores P., Lopez-Grancha M., Cardona D., (2004) Long-term neurotoxicity of Paraoxon and clorpyrifos: behavioural and pharmacological evidence. Neurotoxicol. terathol., 26, 35–317

    Article  Google Scholar 

  17. Noort D., Benschop H.P., Black R.M., (2002) Biomonitoring of exposure to chemical warfare agents: a review. Toxicol. Appl. Pharmacol., 184, 116–126

    Article  CAS  PubMed  Google Scholar 

  18. Hooijschur E.W.J., Hulst A.G., De Jong A.L., De Reuver L.P., Van Krimpen S.H., Van Baar B.L.M., Wils E.R.J., Kientz C.E., Brinkman U.A. Th., (2002) Identification of chemicals related to the chemical weapons convention during an interlaboratory proficiency test. TrAC, 21, 116–130

    Google Scholar 

  19. Palleschi G., Bernabei M., Cremisini C., Mascini M., (1992) Determination of orga-nophosphorus insecticides with a choline electrochemical biosensor. Sens. Actuators B, 7, 513–517

    Article  Google Scholar 

  20. Tran-Minh C., Pandey P.C., Kumaran S., (1990) Studies on acetylcholine sensor and its analytical application based on the inhibition of cholinesterase. Bios. Bioelectron., 5, 461–471

    Article  CAS  Google Scholar 

  21. Cagnini A., Palchetti I., Lionti I., Mascini M., Turner A.P.F., (1995) Disposable ruthenized screen-printed biosensors for pesticides monitoring. Sens. Actuators B-Chem., 24, 85–89

    Article  Google Scholar 

  22. Palchetti I., Cagnini A., Del Carlo M., Coppi C., Mascini M., Turner A.P.F., (1997) Determination of anticholisterase pesticides in real samples using a disposable biosensor. Anal. Chim. Acta, 337, 315–321

    Article  CAS  Google Scholar 

  23. Hernandez S., Palchetti I., Mascini M., (2000) Determination of anticholinesterase activity for pesticides monitorino using a thiocholine sensor. Intern. J. Environ. Anal. Chem., 78, 263–278

    Article  CAS  Google Scholar 

  24. Marty J.-L., Mionetto N., Lacorte S., Barceló D., (1995) Validation of an enzymatic biosensor with various liquid chromatographic techniques for determining organophosphorus pesticides and carbaryl in freeze-dried waters. Anal. Chim. Acta, 311, 265–271

    Article  CAS  Google Scholar 

  25. Barceló D., Lacorte S., Marty J.-L., (1995) Validation of an enzymatic biosensor with liquid chromatography for pesticide monitoring. TrAC, 14, 334–340

    Google Scholar 

  26. Hart J.P., Hartley I.C., (1994) Voltammetric and amperometric studies of thiocholine at a screen-printed carbon electrode chemically modified with cobalt phthalocyanine: Studies towards a pesticide sensor. Analyst, 119, 259–263

    Article  CAS  Google Scholar 

  27. Martorell D., Céspedes F., Martínez-Fàbre-gas E., Alegret S., (1997) Determination of organophosphorus and carbamate pesticides using a biosensor based on a polishable, 7,7,8,8-tetracyanoquino-dimethane-modi-fied, graphite — epoxy biocomposite. Anal. Chim. Acta, 337, 305–313

    Article  CAS  Google Scholar 

  28. Silva Nunes G., Skládal P., Yamanaka Y., Bar-celó D., (1998) Determination of carbamate residues in crop samples by cholinesterase-based biosensors and chromatographic techniques. Anal. Chim. Acta, 362, 59–68

    Article  Google Scholar 

  29. Ricci F., Arduini F., Amine A., Moscone D., Palleschi G., (2004) Characterisation of prussian blue modified screen-printed electrodes for thiol detection. J. Electroanal. Chem., 563, 229–237

    Article  CAS  Google Scholar 

  30. Laschi S., Ogończyk D., Palchetti I., Mascini M., (2007) Evaluation of pesticide-induced acetylcholinesterase inhibition by means of disposable carbon-modified electrochemi cal biosensors. Enzyme Microb. Technol., 40, 485–489

    Article  CAS  Google Scholar 

  31. Suprun E., Evtugyn G., Budnikov H., Ricci F., Moscone D., Palleschi G., (2005) Acetyl-cholinesterase sensor based on screen-printed carbon electrode modified with prussian blue. Anal. Bioanal. Chem., 382, 597–604

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Palchetti, I., Laschi, S., Mascini, M. (2009). Electrochemical Biosensor Technology: Application to Pesticide Detection. In: Rasooly, A., Herold, K.E. (eds) Biosensors and Biodetection. Methods in Molecular Biology™, vol 504. Humana Press. https://doi.org/10.1007/978-1-60327-569-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-569-9_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-568-2

  • Online ISBN: 978-1-60327-569-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics