Skip to main content

Targeted Therapy of Sarcoma

  • Chapter
Targeted Cancer Therapy

Part of the book series: Current Clinical Oncology™ ((CCO))

Abstract

Sarcomas represent a heterogeneous group of tumors that are composed of a wide range of tumor types with different natural histories and therapeutic approaches. Recent discoveries have identified specific molecular alterations in the pathogenesis of many of these tumors. These specific molecular alterations acquired during sarcomagenesis lead to the phenotypic changes of malignancy, namely proliferation, survival, invasion, metastasis, and angiogenesis. Inhibition of these molecular alterations by targeted therapy represents an opportunity to reverse the biologic basis of tumor formation in soft tissue sarcomas (STSs) and bone tumors (BTs). In this chapter we discuss a general overview of sarcomas and give specific examples of successful and proposed approaches to targeted therapyfor this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2006. CA Cancer J Clin ;56(2):106–30.

    Article  PubMed  Google Scholar 

  2. Patel S, Vadhan-Raj S, Burgess M, et al. Results of two consecutive trials of dose-intensive chemotherapy with doxorubicin and ifosfamide in patients with sarcomas. Am J Clin Oncol 1998;21(3):317–21.

    Article  PubMed  CAS  Google Scholar 

  3. Hensley ML, Maki R, Venkatraman E, et al. Gemcitabine and docetaxel in patients with unresectable leiomyosarcoma: results of a phase II trial. J Clin Oncol 2002;20(12):2824–31.

    Article  PubMed  CAS  Google Scholar 

  4. Patel S, Vadhan-Raj S, Papadopoulos N, et al. High-dose Ifosfamide in bone and soft-tissue sarcomas: results of phase II and pilot studies—dose response and schedule dependence. J Clin Oncol 1997;15:2378–84.

    PubMed  CAS  Google Scholar 

  5. Picci P, Bohling T, Bacci G, et al. Chemotherapy-induced tumor necrosis as a prognostic factor in localized Ewing’s sarcoma of the extremities. J Clin Oncol 1997;15(4):1553–9.

    PubMed  CAS  Google Scholar 

  6. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100(1):57–70.

    Article  PubMed  CAS  Google Scholar 

  7. Slominski A, Wortsman J, Carlson A, et al. Molecular pathology of soft tissue and bone tumors: a review. Arch Pathol Lab Med 1999;123(12):1246–59.

    PubMed  CAS  Google Scholar 

  8. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2000;103(2):211–25.

    Article  PubMed  CAS  Google Scholar 

  9. Price N, Trent J, El-Naggar A, et al. Highly accurate two-gene classifier for differentiating gastrointestinal stromal tumors and leiomyosarcomas. Proc Natl Acad Sci USA 2007;104(9):3414–9.

    Article  PubMed  CAS  Google Scholar 

  10. Clary BM, DeMatteo RP, Lewis JJ, et al. Gastrointestinal stromal tumors and leiomyosarcoma of the abdomen and retroperitoneum: a clinical comparison. Ann Surg Oncol 2001;8(4):290–9.

    Article  PubMed  CAS  Google Scholar 

  11. Andersson J, Sjèogren H, Meis-Kindblom JM, et al. The complexity of KIT gene mutations and chromosome rearrangements and their clinical correlation in gastrointestinal stromal (pacemaker cell) tumors. Am J Pathol 2002;160(1):15–22.

    PubMed  CAS  Google Scholar 

  12. Trent JC, Beach J, Burgess MA, et al. A two-arm phase II study of temozolomide in patients with advanced gastrointestinal stromal tumors and other soft tissue sarcomas. Cancer 2003;98(12):2693–9.

    Article  PubMed  CAS  Google Scholar 

  13. Mol CD, Dougan DR, Schneider TR, et al. Structural basis for the autoinhibition and STI-571 inhibition of c-Kit tyrosine kinase. J Biol Chem 2004;279(30):31655–63.

    Article  PubMed  CAS  Google Scholar 

  14. Mechtersheimer G, Egerer G, Hensel M, et al. Gastrointestinal stromal tumours and their response to treatment with the tyrosine kinase inhibitor imatinib. Virchows Arch 2004;444(2):108–18.

    Article  PubMed  CAS  Google Scholar 

  15. Chirieac L, Trent J, Steinert DM, et al. Correlation of immunophenotype with clinical outcome of GIST patients treated with imatinib mesylate. Presented to the Connective Tissue Oncology Society, Barcelona, 2003.

    Google Scholar 

  16. Medeiros F, Corless CL, Duensing A, et al. KIT-negative gastrointestinal stromal tumors: proof of concept and therapeutic implications. Am J Surg Pathol 2004;28(7):889–94.

    Article  PubMed  Google Scholar 

  17. Verweij J, Casali PG, Zalcberg J, et al. Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet 2004;364(9440):1127–34.

    Article  PubMed  CAS  Google Scholar 

  18. Zalcberg A, Verweij J, Casali PG, et al. Outcome of patients with advanced gastro-intestinal stromal tumors (GIST) crossing over to a daily imatinib dose of 800 mg (HD) after progression on 400 mg (LD)—an international, intergroup study of the EORTC, ISG and AGITG. Presented to the American Society of Clinical Oncology, New Orleans; 2004. p 815. Abstract 9004.

    Google Scholar 

  19. Rankin C, von Mehren M, Blanke C, et al. Dose effect of imatinib in patients with metastatic GIST: a phase III sarcoma group study S0033. Presented to the American Society of Clinical Oncology, New Orleans, 2004, p 815.

    Google Scholar 

  20. Demetri GD, von Oosterom AT, Blackstein M, et al. Phase 3, multicenter, randomized, double-blind, placebo-controlled trial of SU11248 in patients (pts) following failure of imatinib for metastatic GIST. Presented to the American Society of Clinical Oncology, Orlando, 2005. Abstract 4000.

    Google Scholar 

  21. Dileo P, Randhawa R, Vansonnenberg E. Safety and efficacy of percutaneous radio-frequency ablation (RFA) in patients (pts) with metastatic gastrointestinal stromal tumor (GIST) with clonal evolution of lesions refractory to imatinib mesylate (IM). Presented to the American Society of Clinical Oncology, New Orleans, 2004, p 820. Abstract 9024.

    Google Scholar 

  22. Allam M, Martinet N, Martinet Y. Differential migratory response of U-2 OS osteosarcoma cell to the various forms of platelet-derived growth factor. Biochimie 1992;74(2):183–6.

    Article  PubMed  CAS  Google Scholar 

  23. Badache A, De Vries GH. Neurofibrosarcoma-derived Schwann cells overexpress platelet-derived growth factor (PDGF) receptors and are induced to proliferate by PDGF BB. J Cell Physiol 1998;177(2):334–42.

    Article  PubMed  CAS  Google Scholar 

  24. Fahrer C, Brachmann R, von der Helm K. Expression of c-sis and other cellular proto-oncogenes in human sarcoma cell lines and biopsies. Int J Cancer 1989;44(4):652–7.

    Article  PubMed  CAS  Google Scholar 

  25. Gisselsson D, Hoglund M, O’Brien KP, et al. A case of dermatofibrosarcoma protuberans with a ring chromosome 5 and a rearranged chromosome 22 containing amplified COL1A1 and PDGFB sequences. Cancer Lett 1998;133(2):129–34.

    Article  PubMed  CAS  Google Scholar 

  26. Benito M, Lorenzo M. Platelet derived growth factor/tyrosine kinase receptor mediated proliferation. Growth Regul 1993;3(3):172–9.

    PubMed  CAS  Google Scholar 

  27. Werner S, Hofschneider PH, Heldin CH, et al. Cultured Kaposi’s sarcoma-derived cells express functional PDGF A-type and B-type receptors. Exp Cell Res 1990;187(1):98–103.

    Article  PubMed  CAS  Google Scholar 

  28. Clarke MF, Westin E, Schmidt D, et al. Transformation of NIH 3T3 cells by a human c-sis cDNA clone. Nature 1984;308(5958):464–7.

    Article  PubMed  CAS  Google Scholar 

  29. Betsholtz C, Westermark B, Ek B, et al.Coexpression of a PDGF-like growth factor and PDGF receptors in a human osteosarcoma cell line: implications for autocrine receptor activation. Cell 1984;39(3 Pt 2):447–57.

    Article  PubMed  CAS  Google Scholar 

  30. Kazlauskas A, Bowen-Pope D, Seifert R, et al. Different effects of homo- and heterodimers of platelet-derived growth factor A and B chains on human and mouse fibroblasts. EMBO J 1988;7(12):3727–35.

    PubMed  CAS  Google Scholar 

  31. Callahan M, Cochran BH, Stiles CD. The PDGF-inducible ‘competence genes’: intracellular mediators of the mitogenic response. Ciba Found Symp 1985;116:87–97.

    PubMed  CAS  Google Scholar 

  32. Heldin CH, Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 1999;79(4):1283–316.

    PubMed  CAS  Google Scholar 

  33. O’Brien KP, Seroussi E, Dal Cin P, et al. Various regions within the alpha-helical domain of the COL1A1 gene are fused to the second exon of the PDGFB gene in dermatofibrosarcomas and giant-cell fibroblastomas. Genes Chromosomes Cancer 1998;23(2):187–93.

    Article  PubMed  CAS  Google Scholar 

  34. Sjoblom T, Shimizu A, O’Brien K, et al. Growth inhibition of dermatofibrosarcoma protuberans tumors by the platelet-derived growth factor receptor antagonist STI571 through induction of apoptosis. Cancer Res 2001;61(15):5778–83.

    PubMed  CAS  Google Scholar 

  35. Maki RG, Awan RA, Dixon RH, et al. Differential sensitivity to imatinib of 2 patients with metastatic sarcoma arising from dermatofibrosarcoma protuberans. Int J Cancer 2002;100(6):623–6.

    Article  PubMed  CAS  Google Scholar 

  36. Coffin CM, Watterson J, Priest JR, et al. Extrapulmonary inflammatory myofibroblastic tumor (inflammatory pseudotumor): a clinicopathologic and immunohistochemical study of 84 cases. Am J Surg Pathol 1995;19(8):859–72.

    Article  PubMed  CAS  Google Scholar 

  37. Cook JR, Dehner LP, Collins MH, et al. Anaplastic lymphoma kinase (ALK) expression in the inflammatory myofibroblastic tumor: a comparative immunohistochemical study. Am J Surg Pathol 2001;25(11):1364–71.

    Article  PubMed  CAS  Google Scholar 

  38. Arber DA, Weiss LM, Chang KL. Detection of Epstein-Barr Virus in inflammatory pseudotumor. Semin Diagn Pathol 1998;15(2):155–60.

    PubMed  CAS  Google Scholar 

  39. Gomez-Roman JJ, Sanchez-Velasco P, Ocejo-Vinyals G, et al. Human herpesvirus-8 genes are expressed in pulmonary inflammatory myofibroblastic tumor (inflammatory pseudotumor). Am J Surg Pathol 2001;25(5):624–9.

    Article  PubMed  CAS  Google Scholar 

  40. Coffin CM, Dehner LP, Meis-Kindblom JM. Inflammatory myofibroblastic tumor, inflammatory fibrosarcoma, and related lesions: an historical review with differential diagnostic considerations. Semin Diagn Pathol 1998;15(2):102–10.

    PubMed  CAS  Google Scholar 

  41. Su LD, Atayde-Perez A, Sheldon S, et al. Inflammatory myofibroblastic tumor: cytogenetic evidence supporting clonal origin. Mod Pathol 1998;11(4):364–8.

    PubMed  CAS  Google Scholar 

  42. Snyder CS, Dell’Aquila M, Haghighi P, et al. Clonal changes in inflammatory pseudotumor of the lung: a case report. Cancer 1995;76(9):1545–9.

    Article  PubMed  CAS  Google Scholar 

  43. Griffin CA, Hawkins AL, Dvorak C, et al. Recurrent involvement of 2p23 in inflammatory myofibroblastic tumors. Cancer Res 1999;59(12):2776–80.

    PubMed  CAS  Google Scholar 

  44. Morris SW, Kirstein MN, Valentine MB, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 1994;263(5151):1281–4. Erratum: Science 1995;20;267(5196):316–7.

    Article  PubMed  CAS  Google Scholar 

  45. Lawrence B, Perez-Atayde A, Hibbard MK, et al. TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumors. Am J Pathol 2000;157(2):377–84.

    PubMed  CAS  Google Scholar 

  46. Lamant L, Dastugue N, Pulford K, et al. A new fusion gene TPM3-ALK in anaplastic large cell lymphoma created by a (1;2)(q25;p23) translocation. Blood 1999;93(9):3088–95.

    PubMed  CAS  Google Scholar 

  47. Zhang Q, Raghunath PN, Xue L, et al. Multilevel dysregulation of STAT3 activation in anaplastic lymphoma kinase-positive T/null-cell lymphoma. J Immunol 2002;168(1):466–74.

    PubMed  CAS  Google Scholar 

  48. Sausville EA, Arbuck SG, Messmann R, et al. Phase I trial of 72-hour continuous infusion UCN-01 in patients with refractory neoplasms. J Clin Oncol 2001;19(8):2319–33.

    PubMed  CAS  Google Scholar 

  49. Shmitt C, Fridman J, Yang M, et al. A Senescence program controlled by p53 and p16(INK4a) contributes to the outcome of cancer therapy. Cell 2002;109:335–46.

    Article  Google Scholar 

  50. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972;26(4):239–57.

    PubMed  CAS  Google Scholar 

  51. Reed JC. Mechanisms of apoptosis avoidance in cancer. Curr Opin Oncol 1999;11(1):68–75.

    Article  PubMed  CAS  Google Scholar 

  52. Reed JC. Regulation of apoptosis by bcl-2 family proteins and its role in cancer and chemoresistance. Curr Opin Oncol 1995;7(6):541–6.

    Article  PubMed  CAS  Google Scholar 

  53. Matsuyama S, Reed JC. Mitochondria-dependent apoptosis and cellular pH regulation. Cell Death Differ 2000;7(12):1155–65.

    Article  PubMed  CAS  Google Scholar 

  54. Gao CF, Ren S, Zhang L, et al. Caspase-dependent cytosolic release of cytochrome c and membrane translocation of Bax in p53-induced apoptosis. Exp Cell Res 2001;265(1):145–51.

    Google Scholar 

  55. Thornberry NA, Lazebnik Y. Caspases: enemies within. Science 1998;281(5381):1312–6.

    Article  PubMed  CAS  Google Scholar 

  56. Sheridan JP, Marsters SA, Pitti RM, et al. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 1997;277(5327):818–21.

    Article  PubMed  CAS  Google Scholar 

  57. Evdokiou A, Bouralexis S, Atkins GJ, et al. Chemotherapeutic agents sensitize osteogenic sarcoma cells, but not normal human bone cells, to Apo2L/TRAIL-induced apoptosis. Int J Cancer 2002;99(4):491–504.

    Article  PubMed  CAS  Google Scholar 

  58. Marsters SA, Sheridan JP, Pitti RM, et al. A novel receptor for Apo2L/TRAIL contains a truncated death domain. Curr Biol 1997;7(12):1003–6.

    Article  PubMed  CAS  Google Scholar 

  59. Zhang XD, Franco AV, Nguyen T, et al. Differential localization and regulation of death and decoy receptors for TNF-related apoptosis-inducing ligand (TRAIL) in human melanoma cells. J Immunol 2000;164(8):3961–70.

    PubMed  CAS  Google Scholar 

  60. Griffith TS, Chin WA, Jackson GC, et al. Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. J Immunol 1998;161(6):2833–40.

    PubMed  CAS  Google Scholar 

  61. Ashkenazi A, Pai RC, Fong S, et al. Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 1999;104(2):155–62.

    Article  PubMed  CAS  Google Scholar 

  62. Jo M, Kim TH, Seol DW, et al. Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-inducing ligand. NatMed2000;6(5):564–7.

    Google Scholar 

  63. Lawrence D, Shahrokh Z, Marsters S, et al. Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nat Med 2001;7(4):383–5.

    Article  PubMed  CAS  Google Scholar 

  64. Lacour S, Hammann A, Wotawa A, et al. Anticancer agents sensitize tumor cells to tumor necrosis factor-related apoptosis-inducing ligand-mediated caspase-8 activation and apoptosis. Cancer Res 2001;61(4):1645–51.

    PubMed  CAS  Google Scholar 

  65. Mizutani Y, Nakao M, Ogawa O, et al. Enhanced sensitivity of bladder cancer cells to tumor necrosis factor related apoptosis inducing ligand mediated apoptosis by cisplatin and carboplatin. J Urol 2001;165(1):263–70.

    Article  PubMed  CAS  Google Scholar 

  66. Esnaola NF, Rubin BP, Baldini EH, et al. Response to chemotherapy and predictors of survival in adult rhabdomyosarcoma. Ann Surg 2001;234(2):215–23.

    Article  PubMed  CAS  Google Scholar 

  67. Ferrari A, Dileo P, Casanova M, et al. Rhabdomyosarcoma in adults: a retrospective analysis of 171 patients treated at a single institution. Cancer 2003;98(3):571–80.

    Article  PubMed  Google Scholar 

  68. Hawkins WG, Hoos A, Antonescu CR, et al. Clinicopathologic analysis of patients with adult rhabdomyosarcoma. Cancer 2001;91(4):794–803.

    Article  PubMed  CAS  Google Scholar 

  69. Bonner JA, Harari PM, Giralt J, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 2006;354(6):567–78.

    Article  PubMed  CAS  Google Scholar 

  70. Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 2004;351(4):337–45.

    Article  PubMed  CAS  Google Scholar 

  71. Shepherd FA, Rodrigues Pereira J, Ciuleanu T, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 2005;353(2):123–32.

    Article  PubMed  CAS  Google Scholar 

  72. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001;344(11):783–92.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, Totowa, NJ

About this chapter

Cite this chapter

Ludwig, J., Trent, J.C. (2008). Targeted Therapy of Sarcoma. In: Kurzrock, R., Markman, M. (eds) Targeted Cancer Therapy. Current Clinical Oncology™. Humana Press. https://doi.org/10.1007/978-1-60327-424-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-424-1_16

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-423-4

  • Online ISBN: 978-1-60327-424-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics