Skip to main content

Fish’n ChIPs: Chromatin Immunoprecipitation in the Zebrafish Embryo

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 567))

Abstract

Chromatin immunoprecipitation (ChIP) is arguably the assay of choice to determine the genomic localization of DNA- or chromatin-binding proteins, including post-translationally modified histones, in cells. The increasing importance of the zebrafish, Danio rerio, as a model organism in functional genomics has recently sparked investigations of ChIP-based genome-scale mapping of modified histones on promoters, and studies on the role of specific transcription factors in developmental processes. ChIP assays used in these studies are cumbersome and conventionally require relatively large number of embryos. To simplify the procedure and to be able to apply the ChIP assay to reduced number of embryos, we re-evaluated the protocol for preparation of embryonic chromatin destined to ChIP. We found that manual homogenization of embryos rather than protease treatment to remove the chorion enhances ChIP efficiency and quickens the assay. We also incorporated key steps from a recently published ChIP assay for small cell numbers. We report here a protocol for immunoprecipitation of modified histones from mid-term blastula zebrafish embryos.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ackermann, G. E. and Paw, B. H. (2003) Zebrafish: a genetic model for vertebrate organogenesis and human disorders. Front. Biosci. 8, d1227–d1253.

    Article  PubMed  CAS  Google Scholar 

  2. Chen, T., Zhang, Y. L., Jiang, Y., Liu, S. Z., Schatten, H., Chen, D. Y. and Sun, Q. Y. (2004) The DNA methylation events in normal and cloned rabbit embryos. FEBS Lett. 578, 69–72.

    Article  PubMed  CAS  Google Scholar 

  3. Berghmans, S., Jette, C., Langenau, D., Hsu, K., Stewart, R., Look, T. and Kanki, J. P. (2005) Making waves in cancer research: new models in the zebrafish. Biotechniques 39, 227–237.

    Article  PubMed  CAS  Google Scholar 

  4. Alestrom, P., Holter, J. L. and Nourizadeh-Lillabadi, R. (2006) Zebrafish in functional genomics and aquatic biomedicine. Trends Biotechnol. 24, 15–21.

    Article  PubMed  Google Scholar 

  5. Ekker, S. C. and Larson, J. D. (2001) Morphant technology in model developmental systems. Genesis 30, 89–93.

    Article  PubMed  CAS  Google Scholar 

  6. McCallum, C. M., Comai, L., Greene, E. A. and Henikoff, S. (2000) Targeting induced local lesions IN genomes (TILLING) for plant functional genomics. Plant. Physiol. 123, 439–442.

    Article  PubMed  CAS  Google Scholar 

  7. Doyon, Y., McCammon, J. M., Miller, J. C., Faraji, F., Ngo, C., Katibah, G. E., Amora, R., Hocking, T. D., Zhang, L., Rebar, E. J., Gregory, P. D., Urnov, F. D. and Amacher, S. L. (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat. Biotechnol. 26, 702–708.

    Article  PubMed  CAS  Google Scholar 

  8. Meng, X., Noyes, M. B., Zhu, L. J., Lawson, N. D. and Wolfe, S. A. (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat. Biotechnol. 26, 695–701.

    Article  PubMed  CAS  Google Scholar 

  9. Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., Guenther, M. G., Kumar, R. M., Murray, H. L., Jenner, R. G., Gifford, D. K., Melton, D. A., Jaenisch, R. and Young, R. A. (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956.

    Article  PubMed  CAS  Google Scholar 

  10. Loh, Y. H., Wu, Q., Chew, J. L., Vega, V. B., Zhang, W., Chen, X., Bourque, G., George, J., Leong, B., Liu, J., Wong, K. Y., Sung, K. W., Lee, C. W., Zhao, X. D., Chiu, K. P., Lipovich, L., Kuznetsov, V. A., Robson, P., Stanton, L. W., Wei, C. L., Ruan, Y., Lim, B. and Ng, H. H. (2006) The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat. Genet. 38, 431–440.

    Article  PubMed  CAS  Google Scholar 

  11. Collas, P. and Dahl, J. A. (2008) Chop it, ChIP it, check it: the current status of chromatin immunoprecipitation. Front. Biosci. 13, 929–943.

    Article  PubMed  CAS  Google Scholar 

  12. O'Neill, L. P., Vermilyea, M. D. and Turner, B. M. (2006) Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations. Nat. Genet. 38, 835–841.

    Article  PubMed  Google Scholar 

  13. Havis, E., Anselme, I. and Schneider-Maunoury, S. (2006) Whole embryo chromatin immunoprecipitation protocol for the in vivo study of zebrafish development. Biotechniques 40, 34, 36, 38.

    Article  PubMed  CAS  Google Scholar 

  14. Wardle, F. C., Odom, D. T., Bell, G. W., Yuan, B., Danford, T. W., Wiellette, E. L., Herbolsheimer, E., Sive, H. L., Young, R. A. and Smith, J. C. (2006) Zebrafish promoter microarrays identify actively transcribed embryonic genes. Genome Biol. 7, R71.

    Article  PubMed  Google Scholar 

  15. Hart, D. O., Raha, T., Lawson, N. D. and Green, M. R. (2007) Initiation of zebrafish haematopoiesis by the TATA-box-binding protein-related factor Trf3. Nature 450, 1082–1085.

    Article  PubMed  CAS  Google Scholar 

  16. Dahl, J. A. and Collas, P. (2007) Q2ChIP, a quick and quantitative chromatin immunoprecipitation assay unravels epigenetic dynamics of developmentally regulated genes in human carcinoma cells. Stem Cells 25, 1037–1046.

    Article  PubMed  CAS  Google Scholar 

  17. Dahl, J. A. and Collas, P. (2008) MicroChIP – A rapid micro chromatin immunoprecipitation assay for small cell samples and biopsies. Nucleic Acids Res. 36, e15.

    Article  PubMed  Google Scholar 

  18. Dahl, J. A. and Collas, P. (2008) A rapid micro chromatin immunoprecipitation assay (μChIP). Nat. Protoc. 3, 1032–1045.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by a FUGE grant from the Research Council of Norway to PA and PC.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lindeman, L.C., Vogt-Kielland, L.T., Aleström, P., Collas, P. (2009). Fish’n ChIPs: Chromatin Immunoprecipitation in the Zebrafish Embryo. In: Collas, P. (eds) Chromatin Immunoprecipitation Assays. Methods in Molecular Biology, vol 567. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-414-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-414-2_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-413-5

  • Online ISBN: 978-1-60327-414-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics