Skip to main content

Structural Biology of Programmed Cell Death

  • Chapter
  • First Online:
Book cover Essentials of Apoptosis

Abstract

Structural and biochemical characterization on death receptors, Bcl-2 family proteins, caspases, IAPs, Smac/DIABLO, and other regulatory proteins has revealed significant insights into the molecular mechanisms of apoptosis. This chapter summarizes these advances and presents our current understanding of apoptosis from a structural and mechanistic perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fesik SW. Insights into programmed cell death through structural biology. Cell 2000;103:273–82.

    Article  PubMed  CAS  Google Scholar 

  2. Shi Y. A structural view of mitochondria-mediated apoptosis. Nat Struct Biol 2001;8:394–401.

    Article  PubMed  CAS  Google Scholar 

  3. Ashkenazi A, Dixit V M. Death receptors: Signaling and modulation. Science 1998;281:1305–8.

    Article  PubMed  CAS  Google Scholar 

  4. Jones EY, Stuart DI, Walker NP. Structure of tumour necrosis factor. Nature 1989;338:225–8.

    Article  PubMed  CAS  Google Scholar 

  5. Eck MJ, Sprang SR. The structure of tumor necrosis factor alpha at 2.6 Å resolution: Implications for receptor binding. J Biol Chem 1989;264:17595–605.

    PubMed  CAS  Google Scholar 

  6. Eck MJ, Ultsch M, Rinderknecht E, de Vos AM, Sprang SR. The structure of human lymphotoxin (tumor necrosis factor beta) at 1.9 Å resolution. J Biol Chem 1992;267:2119–22.

    PubMed  CAS  Google Scholar 

  7. Banner DW, D'Acry A, Janes W, Gentz R, Schoenfeld H-J, Broger C, Loetscher H, Lessiauer W. Crystal structure of the soluble human 55 kd TNF receptor-human TNFb complex: Implications for TNF receptor activation. Cell 1993;73:431–45.

    Article  PubMed  CAS  Google Scholar 

  8. Hymowitz SG, Christinger HW, Fuh G, Ultsch M, O'Connell M, Kelley RF, Ashkennazi A, de Vos AM. Triggering cell death: The crystal structure of Apo2L/TRAIL in a complex with death receptor 5. Mol Cell 1999;4:563–71.

    Article  PubMed  CAS  Google Scholar 

  9. Mongkolsapaya J, Grimes JM, Chen N, Xu X-N, Stuart DI, Jones EY, Screaton GR. Structure of the TRAIL-DR5 complex reveals mechanisms conferring specificity in apoptotic initiation. Nat Struct Biol 1999;6:1048–53.

    Article  PubMed  CAS  Google Scholar 

  10. Naismith JH, Devine TQ, Brandhuber BJ, Sprang SR. Crystallographic evidence for dimerization of unliganded tumor necrosis factor receptor. J Biol Chem 1995;270:13303-7.

    Article  PubMed  CAS  Google Scholar 

  11. Naismith JH, Devine TQ, Kohno T, Sprang SR. Structures of the extracellular domain of the type I tumor necrosis factor receptor. Structure 1996;4:1251–62.

    Article  PubMed  CAS  Google Scholar 

  12. Adams J, Cory S. The Bcl-2 protein family: Arbiters of cell survival. Science 1998;281:1322–6.

    Article  PubMed  CAS  Google Scholar 

  13. Muchmore SW, Sattler M, Liang H, Meadows RP, Harlan JE, Yoon HS, Nettesheim D, Chang BS, Thompson CB, Wong S-L, Ng SL, Fesik SW. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 1996;381:335–41.

    Article  PubMed  CAS  Google Scholar 

  14. Losonczi JA, Olejniczak ET, Betz SF, Harlan JE, Mack J, Fesik SW. NMR studies of the anti-apoptotic protein Bcl-xL in micelles. Biochemistry 2000;39:11024–33.

    Article  PubMed  CAS  Google Scholar 

  15. Sattler M, Yoon HS, Nettesheim D, Meadows RP, Harlan JE, Eberstadt M, Yoon HS, Shuker SB, Chang BS, Minn AJ, Thompson CB, Fesik SW. Structure of Bcl-xL-Bak peptide complex: Recognition between regulators of apoptosis. Science 1997;275:983–6.

    Article  PubMed  CAS  Google Scholar 

  16. Chou JJ, Li H, Salvesen GS, Yuan J, Wagner G. Solution structure of BID, an intracellular amplifier of apoptotic signaling. Cell 1999;96:615–24.

    Article  PubMed  CAS  Google Scholar 

  17. McDonnell JM, Fushman D, Milliman CL, Korsmeyer SJ, Cowburn D. Solution structure of the proapoptotic molecule BID: A structural basis for apoptotic agonists and antagonists. Cell 1999;96:625–34.

    Article  PubMed  CAS  Google Scholar 

  18. Suzuki M, Youle RJ, Tjandra N. Structure of Bax: Coregulation of dimer formation and intracellular localization. Cell 2000;103:645–54.

    Article  PubMed  CAS  Google Scholar 

  19. Thornberry NA, Lazebnik Y. Caspases: Enemies within. Science 1998;281:1312–6.

    Article  PubMed  CAS  Google Scholar 

  20. Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR. The C. elegans cell death gene Ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 1993;75(4):641–52.

    Article  PubMed  CAS  Google Scholar 

  21. Shi Y. Mechanisms of caspase inhibition and activation during apoptosis. Mol Cell 2002;9:459–70.

    Google Scholar 

  22. Walker NP, Talanian RV, Brady KD, Dang LC, Bump NJ, Ferenz CR, Franklin S, Ghayur T, Hackett MC, Hammill LD. Crystal structure of the cysteine protease interleukin-1b-converting enzyme: A (p20/p10)2 homodimer. Cell 1994;78:343–52.

    Article  PubMed  CAS  Google Scholar 

  23. Wilson KP, Black J-A, Thomson JA, Kim EE, Griffith JP, Navia MA, Murcko MA, Chambers SP, Aldape RA, Raybuck SA, Livingston DJ. Structure and mechanism of interleukin-1b converting enzyme. Nature 1994;370:270–5.

    Article  PubMed  CAS  Google Scholar 

  24. Rotonda J, Nicholson DW, Fazil KM, Gallant M, Gareau Y, Labelle M, Peterson EP, Rasper DM, Ruel R, Vaillancourt JP, Thornberry NA, Becker JW. The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis. NatStruct Biol 1996;3:619–25.

    Article  CAS  Google Scholar 

  25. Mittl PR, Di Marco S, Krebs JF, Bai X, Karanewsky DS, Priestle JP, Tomaselli KJ, Grutter MG. Structure of recombinant human CPP32 in complex with the tetrapeptide acetyl-Asp-Val-Ala-Asp fluoromethyl ketone. J Biol Chem 1997;272:6539–47.

    Article  PubMed  CAS  Google Scholar 

  26. Wei Y, Fox T, Chambers SP, Sintchak J-A, Coll JT, Golec JMC, Swenson L, Wilson KP, Charifson PS. The structures of caspases-1, -3, -7 and -8 reveal the basis for substrate and inhibitor selectivity. Chem Biol 2000;7:423–32.

    Article  PubMed  CAS  Google Scholar 

  27. Blanchard H, Kodandapani L, Mittl PRE, Di Marco S, Krebs JK, Wu JC, Tomaselli KJ, Grutter MG. The three dimensional structure of caspase-8: An initiator enzyme in apoptosis. Structure 1999;7:1125–33.

    Article  PubMed  CAS  Google Scholar 

  28. Watt W, Koeplinger KA, Mildner AM, Heinrikson RL, Tomasselli AG, Watenpaugh KD. The atomic-resolution structure of human caspase-8, a key activator of apoptosis. Structure 1999;7:1135–43.

    Article  PubMed  CAS  Google Scholar 

  29. Renatus M, Stennicke HR, Scott FL, Liddington RC, Salvesen GS. Dimer formation drives the activation of the cell death protease caspase 9. Proc Natl Acad Sci USA 2001;98:14250–5.

    Article  PubMed  CAS  Google Scholar 

  30. Chai J, Shiozaki E, Srinivasula SM, Alnemri ES, Shi Y. Crystal structure of a procaspase-7 zymogen: Mechanisms of activation and substrate binding. Cell 2001;107:399–407.

    Article  PubMed  CAS  Google Scholar 

  31. Riedl SJ, Fuentes-Prior P, Renatus M, Kairies N, Krapp S, Huber R, Savesen GS, Bode W. Structural basis for the activation of human procaspase-7. Proc Natl Acad Sci USA 2001;98:14790–5.

    Article  PubMed  CAS  Google Scholar 

  32. Srinivasula SM, Ahmad M, MacFarlane M, Luo Z, Huang Z, Fernandes-Alnemri T, Alnemri ES. Generation of constitutively active recombinant caspase-3 and -6 by rearrangement of their subunits. J Biol Chem 1998;273:10107–111.

    Article  PubMed  CAS  Google Scholar 

  33. Wang S, Hawkins C, Yoo S, Muller H-A, Hay B. The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell 1999;98:453–63.

    Article  PubMed  CAS  Google Scholar 

  34. Stennicke HR, Deveraux QL, Humke EW, Reed JC, Dixit VM, Salvesen GS. Caspase-9 can be activated without proteolytic processing. J Biol Chem 1999;274:8359–62.

    Article  PubMed  CAS  Google Scholar 

  35. Deveraux QL, Reed JC. IAP family proteins—Suppressors of apoptosis. Genes Dev 1999;13:239–52.

    Article  PubMed  CAS  Google Scholar 

  36. Sun C, Cai M, Gunasekera AH, Meadows RP, Wang H, Chen J, Zhang H, Wu W, Xu N, Ng S-C, Fesik SW. NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP. Nature 1999;401:818–22.

    Article  PubMed  CAS  Google Scholar 

  37. Sun C, Cai M, Meadows RP, Xu N, Gunasekera AH, Herrmann J, Wu JC, Fesik SW. NMR structure and mutagenesis of the third BIR domain of the inhibitor of apoptosis protein XIAP. J Biol Chem 2000;275:33777–81.

    Article  PubMed  CAS  Google Scholar 

  38. Hinds MG, Norton RS, Vaux DL, Day CL. Solution structure of a baculoviral inhibitor of apoptosis (IAP) repeat. Nat Struct Biol 1999;6(7):648–51.

    Article  PubMed  CAS  Google Scholar 

  39. Li F, Ambrosini G, Chu EY, Plescia J, Tognin S, Marchisio PC, Altieri DC. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 1998;396:580–4.

    Article  PubMed  CAS  Google Scholar 

  40. Muchmore SW, Chen J, Jakob C, Zakula D, Matayoshi ED, Wu W, Zhang H, Li F, Ng S-C, Altieri DC. Crystal structure and mutagenic analysis of the inhibitor-of-apoptosis protein survivin. Mol Cell 2000;6:173–82.

    PubMed  CAS  Google Scholar 

  41. Verdecia MA, Huang H-K, Dutil E, Kaiser DA, Hunter T, Noel JP. Structure of the human anti-apoptotic protein survivin reveals a dimeric arrangement. Nat Struct Biol 2000;7:602–8.

    Article  PubMed  CAS  Google Scholar 

  42. Chantalat L, Skoufias DA, Kleman J-P, Jung B, Dideberg O, Margolis RL. Crystal structure of human survivin reveals a bow-tie shaped dimer with two unusual alpha helical extensions. Mol Cell 2000;6:183–9.

    PubMed  CAS  Google Scholar 

  43. Chai J, Shiozaki E, Srinivasula SM, Wu Q, Datta P, Alnemri ES, Shi Y. Structural basis of caspase-7 inhibition by XIAP. Cell 2001;104:769–80.

    Article  PubMed  CAS  Google Scholar 

  44. Huang Y, Park YC, Rich RL, Segal D, Myszka DG, Wu H. Structural basis of caspase inhibition by XIAP: Differential roles of the linker versus the BIR domain. Cell 2001;104:781–90.

    PubMed  CAS  Google Scholar 

  45. Riedl SJ, Renatus M, Schwarzenbacher R, Zhou Q, Sun C, Fesik SW, Liddington RC, Salvesen GS. Structural basis for the inhibition of caspase-3 by XIAP. Cell 2001;104:791–800.

    Article  PubMed  CAS  Google Scholar 

  46. Srinivasula SM, Saleh A, Hedge R, Datta P, Shiozaki E, Chai J, Robbins PD, Fernandes-Alnemri T, Shi Y, Alnemri ES. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO mediates opposing effects on caspase activity and apoptosis. Nature 2001;409:112–6.

    Article  Google Scholar 

  47. Miller LK. An exegesis of IAPs: Salvation and surprises from BIR motifs. Trends Cell Biol 1999;9:323–8.

    Article  PubMed  CAS  Google Scholar 

  48. Bump NJ, Hackett M, Hugunin M, Seshagiri S, Brady K, Chen P, Ferenz C, Franklin S, Ghayur T, Li P. Inhibition of ICE family proteases by baculovirus antiapoptotic protein p35. Science 1995;269:1885–8.

    Article  PubMed  CAS  Google Scholar 

  49. Zhou Q, Krebs JF, Snipas SJ, Price A, Alnemri ES, Tomaselli KJ, Salvesen GS. Interaction of the baculovirus anti-apoptotic protein p35 with caspases. Specificity, kinetics, and characterization of the caspase/p35 complex. Biochemistry 1998;37:10757–65.

    Article  PubMed  CAS  Google Scholar 

  50. Xu G, Cirilli M, Huang Y, Rich RL, Myszka DG, Wu H. Covalent inhibition revealed by the crystal structure of the caspase-8/p35 complex. Nature 2001;410:494–7.

    Google Scholar 

  51. Fisher AJ, Cruz WD, Zoog SJ, Schneider CL, Friesen PD. Crystal structure of baculovirus p35: Role of a novel reactive site loop in apoptotic caspase inhibition. EMBO J 1999;18:2031–40.

    Article  PubMed  CAS  Google Scholar 

  52. Dela Cruz WP, Friesen PD, Fisher AJ. Crystal structure of baculovirus p35 reveals a novel conformational change in the reactive site loop after caspase cleavage. J Biol Chem 2001;276:32933–9.

    Article  PubMed  CAS  Google Scholar 

  53. Du C, Fang M, Li Y, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation during apoptosis. Cell 2000;102:33–42.

    Article  PubMed  CAS  Google Scholar 

  54. Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE, Moritz RL, Simpson RJ, Vaux DL. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 2000;102:43–53.

    Article  PubMed  CAS  Google Scholar 

  55. Chai J, Du C, Wu J-W, Kyin S, Wang X, Shi Y. Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 2000;406:855–62.

    Article  PubMed  CAS  Google Scholar 

  56. Hay BA. Understanding IAP function and regulation: A view from Drosophila. Cell Death Differ 2000;7(11):1045–56.

    Article  PubMed  CAS  Google Scholar 

  57. Wu G, Chai J, Suber TL, Wu J-W, Du C, Wang X, Shi Y. Structural basis of IAP recognition by Smac/DIABLO. Nature 2000;408:1008–12.

    Article  PubMed  CAS  Google Scholar 

  58. Liu Z, Sun C, Olejniczak ET, Meadows RP, Betz SF, Oost T, Herrmann J, Wu JC, Fesik SW. Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature 2000;408:1004–8.

    Article  PubMed  CAS  Google Scholar 

  59. Wu J-W, Cocina AE, Chai J, Hay BA, Shi Y. Structural analysis of a functional DIAP1 fragment bound to Grim and Hid peptides. Mol Cell 2001;8:95–104.

    Article  PubMed  CAS  Google Scholar 

  60. Huang B, Eberstadt M, Olejniczak ET, Meadows RP, Fesik SW. NMR structure and mutagenesis of the Fas (APO-1/CD95) death domain. Nature 1996;384:638–41.

    Article  PubMed  CAS  Google Scholar 

  61. Eberstadt M, Huang B, Chen Z, Meadows RP, Ng S-C, Zheng L, Lenardo MJ, Fesik SW. NMR structure and mutagenesis of the FADD (Mort1) death-effector domain. Nature 1998;392:941–5.

    Article  PubMed  CAS  Google Scholar 

  62. Chou JJ, Matsuo H, Duan H, Wagner G. Solution structure of the RAIDD CARD and model for CARD/CARD interaction in caspase-2 and caspase-9 recruitment. Cell 1998;94:171–80.

    Article  PubMed  CAS  Google Scholar 

  63. Qin H, Srinivasula SM, Wu G, Fernandes-Alnemri T, Alnemri ES, Shi Y. Structural basis of procaspase-9 recruitment by the apoptotic protease-activating factor 1. Nature 1999;399:547–55.

    Google Scholar 

  64. Xiao T, Towb P, Wasserman SA, Sprang SR. Three-dimensional structure of a complex between the death domains of Pelle and Tube. Cell 1999;99:545–55.

    Article  PubMed  CAS  Google Scholar 

  65. Salvesen GS, Dixit VM. Caspase activation: The induced-proximity model. Proc Natl Acad Sci USA 1999;96:10964–7.

    Article  PubMed  CAS  Google Scholar 

  66. Muzio M, Stockwell BR, Stennicke HR, Salvesen GS, Dixit VM. An induced proximity model for caspase-8 activation. J Biol Chem 1998;273(5):2926–30.

    Article  PubMed  CAS  Google Scholar 

  67. Yang X, Chang HY, Baltimore D. Autoproteolytic activation of pro-caspases by oligomerization. Mol Cell 1998;1:319–25.

    Article  PubMed  CAS  Google Scholar 

  68. Yang X, Chang HY, Baltimore D. Essential role of CED-4 oligomerization in CED-3 activation and apoptosis. Science 1998;281:1355–7.

    Article  PubMed  CAS  Google Scholar 

  69. Rodriguez J, Lazebnik Y. Caspase-9 and Apaf-1 form an active holoenzyme. Genes Dev 1999;13(24):3179–84.

    Article  PubMed  CAS  Google Scholar 

  70. Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW. Three-dimensional structure of the apoptosome: Implications for assembly, procaspase-9 binding and activation. Mol Cell 2002;9:423–32.

    Google Scholar 

  71. Klaulis PJ. Molscript: A program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 1991;24:946–50.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yigong Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shi, Y. (2009). Structural Biology of Programmed Cell Death. In: Dong, Z., Yin, XM. (eds) Essentials of Apoptosis. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-381-7_4

Download citation

Publish with us

Policies and ethics