Skip to main content

Acid-Urea-Triton Polyacrylamide Gels for Histones

  • Protocol
The Protein Protocols Handbook

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Acid-urea polyacrylamide gels are capable of separating basic histone proteins provided they differ sufficiently in size and/or effective charge (see Chapter 14). Separation between similarly sized and charged H2A, H2B, and H3 forms of most organisms can typically not be achieved. Zweidler discovered that core histones but not linker histones or any other known protein (see Note 1) bind the nonionic detergent Triton (1). This limits the usability of detergent addition to the separation of core histones only, unless they must be separated from other basic proteins in an acid-urea gel electrophoresis environment. The binding of Triton to a core histone increases the effective mass of the protein within the gel without affecting its charge, and thus reduces its mobility during electrophoresis. Separation between most or all core histone proteins of diverse species can virtually always be obtained by adjusting concentrations of Triton and of urea, which appears to act as a counter-acting, dissociating agent (2). Experimentally, an optimal balance can be determined by gradient gel electrophoresis with a gradient of urea (3) or Triton (4). The Triton gradient protocol in the discontinuous gel system, developed by Bonner and coworkers (5), is described in Section 3. It has a distinct advantage over the urea gradient protocol. Generally, it can identify a core histone protein band as belonging to histone H4, H2B, H3, or H2A. In this order, apparent affinities for Triton X-100 increase sharply (4,6,7). An example of such a separation of a crude mixture of histones with nonhistone proteins from a tobacco callus culture is shown in Fig. 1A. In addition, a detailed working protocol for a long acid-urea-Triton (AUT) gel at 9 mM Triton and 8M urea is provided. It describes the protocol used extensively in my laboratory for the analysis of core histones, especially of histone H3, dicots (6), monocots (7), and the green alga Chlamydomonas (8). Figure 1B shows an example of the differentially acetylated histone H3 variant proteins of tobacco, purified by reversed-phase HPLC (6). The protocol description directly parallels the acid-urea gel protocol described in Chapter 14, which also provides details for the use of different gel dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zweidler, A. (1978) Resolution of histones by polyacrylamide gel electrophoresis in presence of nonionic detergents. Methods Cell Biol. 17, 223–233.

    Article  PubMed  CAS  Google Scholar 

  2. Urban, M. K., Franklin, S. G., and Zweidler, A. (1979) Isolation and characterization of the histone variants in chicken erythrocytes. Biochemistry 18, 3952–3960.

    Article  PubMed  CAS  Google Scholar 

  3. Schwager, S. L. U., Brandt, W. F., and Von Holt, C. (1983) The isolation of isohistones by preparative gel electrophoresis from embryos of the sea urchin Parechinus angulosus. Biochim. Biophys. Acta 741, 315–321.

    CAS  Google Scholar 

  4. Waterborg, J. H., Harrington, R. E., and Winicov, I. (1987) Histone variants and acetylated species from the alfalfa plant Medicago sativa. Arch. Biochem. Biophys. 256, 167–178.

    Article  PubMed  CAS  Google Scholar 

  5. Bonner, W. M., West, M. H. P., and Stedman, J. D. (1980) Two-dimensional gel analysis of histones in acid extracts of nuclei, cells, and tissues. Eur. J. Biochem. 109, 17–23.

    Article  PubMed  CAS  Google Scholar 

  6. Waterborg, J. H. (1992) Existence of two histone H3 variants in dicotyledonous plants and correlation between their acetylation and plant genome size. Plant Mol. Biol. 18, 181–187.

    Article  PubMed  CAS  Google Scholar 

  7. Waterborg, J. H. (1991) Multiplicity of histone H3 variants in wheat, barley, rice and maize. Plant Physiol. 96, 453–158.

    Article  PubMed  CAS  Google Scholar 

  8. Waterborg, J. H., Robertson, A. J., Tatar, D. L., Borza, C. M., and Davie, J. R. (1995) Histones of Chlamydomonas reinhardtii: Synthesis, acetylation and methylation. Plant Physiol. 109, 393–407.

    Article  PubMed  CAS  Google Scholar 

  9. Arents, G., Burlingame, R. W., Wang, B. C., Love, W. E., and Moudrianakis, E. N. (1991) The nucleosomal core histone octamer at 3.1 Å resolution. A tripartite protein assembly and a left-handed superhelix. Proc. Natl. Acad. Sci. USA 88, 10,138–10,148.

    Article  Google Scholar 

  10. Ramakrishnan, V. (1994) Histone structure. Curr. Opinion Struct. Biol. 4, 44–50.

    Article  CAS  Google Scholar 

  11. Arents, G. and Moudrianakis, E. N. (1993) Topography of the histone octamer surface: repeating structural motifs utilized in the docking of nucleosomal DNA. Proc. Natl. Acad. Sci. USA 90, 10,489–10,493.

    Article  PubMed  CAS  Google Scholar 

  12. Waterborg, J. H. and Matthews, H. R. (1983) Patterns of histone acetylation in the cell cycle of Physarum polycephalum. Biochemistry 22, 1489–1496.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Waterborg, J.H. (1996). Acid-Urea-Triton Polyacrylamide Gels for Histones. In: Walker, J.M. (eds) The Protein Protocols Handbook. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1007/978-1-60327-259-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-259-9_15

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-338-2

  • Online ISBN: 978-1-60327-259-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics