Skip to main content

Pharmacologic Approaches to Type 2 Diabetes and Obesity in Children and Adolescents

  • Chapter
  • First Online:
Management of Pediatric Obesity and Diabetes

Part of the book series: Nutrition and Health ((NH))

  • 1807 Accesses

Key Points

Few pharmacologic agents commonly used to manage pediatric obesity and type 2 diabetes mellitus (T2DM) have been studied rigorously in pediatric populations. Although not the mainstay of prevention and risk reduction, pharmacologic agents have proven effective in treating acute sequelae of pediatric T2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADA:

American Diabetes Association

BMI:

Body mass index

DPP-IV:

Dipeptidyl peptidase-IV

EASD:

European Association for the Study of Diabetes

EMA:

European Medicines Agency

FDA:

US Food and Drug Administration

GIP:

Glucose dependent insulinotropic peptide

GLP-1:

Glucagon-like peptide 1

HbA1C :

Hemoglobin A1C

HTN:

Hypertension

NYHA:

New York Heart Association

PCOS:

Polycystic ovarian syndrome

PPAR:

Peroxisome proliferator-activated receptor

SGLT:

Sodium-glucose cotransporters

T1DM:

Type 1 diabetes mellitus

T2DM:

Type 2 diabetes mellitus

TZD:

Thiazolidinedione

References

  1. Ten S, Maclaren N (2004) Insulin resistance syndrome in children. J Clin Endocrinol Metab 89:2526–2539

    PubMed  CAS  Google Scholar 

  2. Legido A, Sarria A, Bueno M et al. (1989) Relationship of body fat distribution to metabolic complications in obese prepubertal boys: gender related differences. Acta Paediatr Scand 78:440–446

    PubMed  CAS  Google Scholar 

  3. Huang TT, Johnson MS, Gower BA, Goran MI (2002) Effect of changes in fat distribution on the rates of change of insulin response in children. Obes Res 10:978–984

    PubMed  CAS  Google Scholar 

  4. Srinivasan SR, Myers L, Berenson GS (2002) Predictability of childhood adiposity and insulin for developing insulin resistance syndrome (syndrome X) in young adulthood: the Bogalusa Heart Study. Diabetes 51:204–209

    PubMed  CAS  Google Scholar 

  5. Owens S, Gutin B, Barbeau P et al. (2000) Visceral adipose tissue and markers of the insulin resistance syndrome in obese black and white teenagers. Obes Res 8:287–293

    PubMed  CAS  Google Scholar 

  6. Caprio S, Hyman LD, McCarthy S, Lange R, Bronson M, Tamborlane WV (1996) Fat distribution and cardiovascular risk factors in obese adolescent girls: importance of the intraabdominal fat depot. Am J Clin Nutr 64:12–17

    PubMed  CAS  Google Scholar 

  7. Gutin B, Basch C, Shea S et al. (1990) Blood pressure, fitness, and fatness in 5- and 6-year-old children. JAMA 264:1123–1127

    PubMed  CAS  Google Scholar 

  8. Berenson GS, Srinivasan SR, Wattigney WA, Harsha DW (1993) Obesity and cardiovascular risk in children. Ann N Y Acad Sci 699:93–103

    PubMed  CAS  Google Scholar 

  9. Freedman DS, Mei Z, Srinivasan SR, Berenson GS, Dietz WH (2007) Cardiovascular risk factors and excess adiposity among overweight children and adolescents: the Bogalusa Heart Study. J Pediatr 150:12–17, e12

    PubMed  Google Scholar 

  10. Mahoney LT, Burns TL, Stanford W et al. (1996) Coronary risk factors measured in childhood and young adult life are associated with coronary artery calcification in young adults: the Muscatine Study. J Am Coll Cardiol 27:277–284

    PubMed  CAS  Google Scholar 

  11. McGill HC Jr, McMahan CA, Herderick EE et al. (2002) Obesity accelerates the progression of coronary atherosclerosis in young men. Circulation 105:2712–2718

    PubMed  Google Scholar 

  12. Visser M (2001) Higher levels of inflammation in obese children. Nutrition 17:480–481

    PubMed  CAS  Google Scholar 

  13. Daniels SR, Morrison JA, Sprecher DL, Khoury P, Kimball TR (1999) Association of body fat distribution and cardiovascular risk factors in children and adolescents. Circulation 99:541–545

    PubMed  CAS  Google Scholar 

  14. Weyer C, Bogardus C, Mott DM, Pratley RE (1999) The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest 104:787–794

    PubMed  CAS  Google Scholar 

  15. Weyer C, Tataranni PA, Bogardus C, Pratley RE (2001) Insulin resistance and insulin secretory dysfunction are independent predictors of worsening of glucose tolerance during each stage of type 2 diabetes development. Diabetes Care 24:89–94

    PubMed  CAS  Google Scholar 

  16. Gungor N, Bacha F, Saad R, Janosky J, Arslanian S (2005) Youth type 2 diabetes: insulin resistance, beta-cell failure, or both? Diabetes Care 28:638–644

    PubMed  CAS  Google Scholar 

  17. Gungor N, Hannon T, Libman I, Bacha F, Arslanian S (2005) Type 2 diabetes mellitus in youth: the complete picture to date. Pediatr Clin North Am 52:1579–1609

    PubMed  Google Scholar 

  18. Tripathy D, Carlsson M, Almgren P et al. (2000) Insulin secretion and insulin sensitivity in relation to glucose tolerance: lessons from the Botnia Study. Diabetes 49:975–980

    PubMed  CAS  Google Scholar 

  19. Kobayashi K, Amemiya S, Higashida K et al. (2000) Pathogenic factors of glucose intolerance in obese Japanese adolescents with type 2 diabetes. Metabolism 49:186–191

    PubMed  CAS  Google Scholar 

  20. Libman IM, Arslanian SA (2007) Prevention and treatment of type 2 diabetes in youth. Horm Res 67:22–34

    PubMed  CAS  Google Scholar 

  21. Masharani U, German M (2007) Pancreatic hormones & diabetes mellitus. In: Gardner DG, Shoback D (eds) Greenspan’s basic & clinical endocrinology, 8th edn. McGraw-Hill, Columbus, pp 661–747

    Google Scholar 

  22. DeFronzo RA (2000) Pharmacologic therapy for type 2 diabetes mellitus. Ann Intern Med 133:73–74

    PubMed  CAS  Google Scholar 

  23. Bressler R, Johnson DG (1997) Pharmacological regulation of blood glucose levels in non-insulin-dependent diabetes mellitus. Arch Intern Med 157:836–848

    PubMed  CAS  Google Scholar 

  24. Hermann LS, Schersten B, Bitzen PO, Kjellstrom T, Lindgarde F, Melander A (1994) Therapeutic comparison of metformin and sulfonylurea, alone and in various combinations. A double-blind controlled study. Diabetes Care 17:1100–1109

    PubMed  CAS  Google Scholar 

  25. DeFronzo RA, Goodman AM (1995) Efficacy of metformin in patients with non-insulin-­dependent diabetes mellitus. The Multicenter Metformin Study Group. N Engl J Med 333:541–549

    PubMed  CAS  Google Scholar 

  26. Jeppesen J, Zhou MY, Chen YD, Reaven GM (1994) Effect of metformin on postprandial lipemia in patients with fairly to poorly controlled NIDDM. Diabetes Care 17:1093–1099

    PubMed  CAS  Google Scholar 

  27. Culler FL, McKean LP, Buchanan CN, Caplan DB, Meacham LR (1994) Glipizide treatment of patients with cystic fibrosis and impaired glucose tolerance. J Pediatr Gastroenterol Nutr 18:375–378

    PubMed  CAS  Google Scholar 

  28. Gottschalk M, Danne T, Vlajnic A, Cara JF (2007) Glimepiride versus metformin as monotherapy in pediatric patients with type 2 diabetes: a randomized, single-blind comparative study. Diabetes Care 30:790–794

    PubMed  CAS  Google Scholar 

  29. United Kingdom Prospective Diabetes Study (UKPDS) (1995) 13: Relative efficacy of randomly allocated diet, sulphonylurea, insulin, or metformin in patients with newly diagnosed non-insulin dependent diabetes followed for three years. BMJ 310:83–88

    Google Scholar 

  30. Wu MS, Johnston P, Sheu WH et al. (1990) Effect of metformin on carbohydrate and lipoprotein metabolism in NIDDM patients. Diabetes Care 13:1–8

    PubMed  CAS  Google Scholar 

  31. Bailey CJ, Wilcock C, Day C (1992) Effect of metformin on glucose metabolism in the splanchnic bed. Br J Pharmacol 105:1009–1013

    PubMed  CAS  Google Scholar 

  32. Lutjens A, Smit JL (1977) Effect of biguanide treatment in obese children. Helv Paediatr Acta 31:473–480

    PubMed  CAS  Google Scholar 

  33. Jones KL, Arslanian S, Peterokova VA, Park JS, Tomlinson MJ (2002) Effect of metformin in pediatric patients with type 2 diabetes: a randomized controlled trial. Diabetes Care 25:89–94

    PubMed  CAS  Google Scholar 

  34. Zuhri-Yafi MI, Brosnan PG, Hardin DS (2002) Treatment of type 2 diabetes mellitus in children and adolescents. J Pediatr Endocrinol Metab 15(Suppl 1):541–546

    PubMed  Google Scholar 

  35. Castells S (2002) Management of hyperglycemia in minority children with type 2 diabetes mellitus. J Pediatr Endocrinol Metab 15(Suppl 1):531–540

    PubMed  Google Scholar 

  36. Srinivasan S, Ambler GR, Baur LA et al. (2006) Randomized, controlled trial of metformin for obesity and insulin resistance in children and adolescents: improvement in body composition and fasting insulin. J Clin Endocrinol Metab 91:2074–2080

    PubMed  CAS  Google Scholar 

  37. Yki-Jarvinen H (2004) Thiazolidinediones. N Engl J Med 351:1106–1118

    PubMed  Google Scholar 

  38. Home PD, Pocock SJ, Beck-Nielsen H et al. (2009) Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet 373:2125–2135

    PubMed  CAS  Google Scholar 

  39. Lago RM, Singh PP, Nesto RW (2007) Congestive heart failure and cardiovascular death in patients with prediabetes and type 2 diabetes given thiazolidinediones: a meta-analysis of randomised clinical trials. Lancet 370:1129–1136

    PubMed  CAS  Google Scholar 

  40. Masoudi FA, Inzucchi SE, Wang Y, Havranek EP, Foody JM, Krumholz HM (2005) Thiazolidinediones, metformin, and outcomes in older patients with diabetes and heart failure: an observational study. Circulation 111:583–590

    PubMed  CAS  Google Scholar 

  41. Dargie HJ, Hildebrandt PR, Riegger GA et al. (2007) A randomized, placebo-controlled trial assessing the effects of rosiglitazone on echocardiographic function and cardiac status in type 2 diabetic patients with New York Heart Association Functional Class I or II Heart Failure. J Am Coll Cardiol 49:1696–1704

    PubMed  CAS  Google Scholar 

  42. Delea TE, Edelsberg JS, Hagiwara M, Oster G, Phillips LS (2003) Use of thiazolidinediones and risk of heart failure in people with type 2 diabetes: a retrospective cohort study. Diabetes Care 26:2983–2989

    PubMed  CAS  Google Scholar 

  43. Singh S, Loke YK, Furberg CD (2007) Thiazolidinediones and heart failure: a teleo-analysis. Diabetes Care 30:2148–2153

    PubMed  CAS  Google Scholar 

  44. Guan Y, Hao C, Cha DR et al. (2005) Thiazolidinediones expand body fluid volume through PPARgamma stimulation of ENaC-mediated renal salt absorption. Nat Med 11:861–866

    PubMed  CAS  Google Scholar 

  45. Nesto RW, Bell D, Bonow RO et al. (2003) Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. Circulation 108:2941–2948

    PubMed  Google Scholar 

  46. Rosen CJ (2007) The rosiglitazone story – lessons from an FDA Advisory Committee meeting. N Engl J Med 357:844–846

    PubMed  CAS  Google Scholar 

  47. Rosen CJ (2010) Revisiting the rosiglitazone story – lessons learned. N Engl J Med 363:803–806

    PubMed  CAS  Google Scholar 

  48. Nissen SE, Wolski K (2010) Rosiglitazone revisited: an updated meta-analysis of risk for myocardial infarction and cardiovascular mortality. Arch Intern Med 170:1191–1201

    CAS  Google Scholar 

  49. Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356:2457–2471

    PubMed  CAS  Google Scholar 

  50. Graham DJ, Ouellet-Hellstrom R, MaCurdy TE et al. (2010) Risk of acute myocardial infarction, stroke, heart failure, and death in elderly medicare patients treated with rosiglitazone or pioglitazone. JAMA 304:411–418

    PubMed  CAS  Google Scholar 

  51. http://www.accessdata.fda.gov/drugsatfda_docs/label/2008/021071s034lbl.pdf. Accessed 15 Sept 2010

  52. http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm226956.htm. Accessed 15 Feb 2011

    PubMed  Google Scholar 

  53. http://www.ema.europa.eu/docs/en_GB/document_library/Press_release/2010/09/WC500096996.pdf. Accessed 15 Feb 2011

  54. Zdravkovic V, Hamilton JK, Daneman D, Cummings EA (2006) Pioglitazone as adjunctive therapy in adolescents with type 1 diabetes. J Pediatr 149:845–849

    PubMed  CAS  Google Scholar 

  55. Marcado-Asis L, Mercado A. Rosiglitazone is safe and effective in the treatment of insulin resistance syndrome in children and young adults. In: Proceedings of the 84th annual meeting of the endocrine society, San Francisco, 19–21 June 2002 [abstract P2-720]

    Google Scholar 

  56. Dabiri G, Jones KL, Krebs J, Sun Y, Mudd P. Benefit of rosiglitazone in children with T2DM. Diabetes 2005 [abstract A457]

    Google Scholar 

  57. Hollander P, Pi-Sunyer X, Coniff RF (1997) Acarbose in the treatment of type I diabetes. Diabetes Care 20:248–253

    PubMed  CAS  Google Scholar 

  58. McCulloch DK, Kurtz AB, Tattersall RB (1983) A new approach to the treatment of nocturnal hypoglycemia using alpha-glucosidase inhibition. Diabetes Care 6:483–487

    PubMed  CAS  Google Scholar 

  59. Meneilly GS, Ryan EA, Radziuk J et al. (2000) Effect of acarbose on insulin sensitivity in elderly patients with diabetes. Diabetes Care 23:1162–1167

    PubMed  CAS  Google Scholar 

  60. Hoffmann J, Spengler M (1994) Efficacy of 24-week monotherapy with acarbose, glibenclamide, or placebo in NIDDM patients. The Essen Study. Diabetes Care 17:561–566

    PubMed  CAS  Google Scholar 

  61. Chiasson JL, Josse RG, Hunt JA et al. (1994) The efficacy of acarbose in the treatment of patients with non-insulin-dependent diabetes mellitus. A multicenter controlled clinical trial. Ann Intern Med 121:928–935

    PubMed  CAS  Google Scholar 

  62. Holman RR, Cull CA, Turner RC (1999) A randomized double-blind trial of acarbose in type 2 diabetes shows improved glycemic control over 3 years (U.K. Prospective Diabetes Study 44). Diabetes Care 22:960–964

    PubMed  CAS  Google Scholar 

  63. Kane MP, Abu-Baker A, Busch RS (2005) The utility of oral diabetes medications in type 2 diabetes of the young. Curr Diabetes Rev 1:83–92

    PubMed  CAS  Google Scholar 

  64. Kentrup H, Bongers H, Spengler M, Kusenbach G, Skopnik H (1999) Efficacy and safety of acarbose in patients with cystic fibrosis and impaired glucose tolerance. Eur J Pediatr 158:455–459

    PubMed  CAS  Google Scholar 

  65. Spengler M, Cagatay M. Assessment of efficacy and tolerability of acarbose in diabetic patients 5–16 years of age. In: Proceedings of the third international symposium on Acarbose, Berlin, 1992, pp 289–291

    Google Scholar 

  66. Henrichs I, Heinze E, Kohne E, Teller W. Improved management of juvenile diabetes by acarbose. In: Proceed 1; International symposium on Acarbose Berlin (West), 12–14 Nov 1987. Acarbose for the treatment of diabetes mellitus [abstract]

    Google Scholar 

  67. Bartsocas C, Papachristou C, Hillebrand I, Papadatos C. Acarbose as an adjunct in the management of juvenile-onset diabetes. In: International symposium on Acarbose. Effects on carbohydrate and fat metabolism, Montreux, Oct 1981 [abstract S27]

    Google Scholar 

  68. Damjanova M. Non randomized follow-up study with acarbose treatment and pre- and post-treatment with placebo in diabetes children (type 1). In: International symposium on Acarbose, Berline (West), 12–14 Nov 1987. Acarbose for the treatment of diabetes mellitus [abstract 74]

    Google Scholar 

  69. Heymsfield SB, Segal KR, Hauptman J et al. (2000) Effects of weight loss with orlistat on glucose tolerance and progression to type 2 diabetes in obese adults. Arch Intern Med 160:1321–1326

    PubMed  CAS  Google Scholar 

  70. Drucker DJ (2007) The role of gut hormones in glucose homeostasis. J Clin Invest 117:24–32

    PubMed  CAS  Google Scholar 

  71. Holst JJ, Vilsboll T, Deacon CF (2009) The incretin system and its role in type 2 diabetes mellitus. Mol Cell Endocrinol 297:127–136

    PubMed  CAS  Google Scholar 

  72. DeFronzo RA, Ratner RE, Han J, Kim DD, Fineman MS, Baron AD (2005) Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care 28:1092–1100

    PubMed  CAS  Google Scholar 

  73. Buse JB, Henry RR, Han J, Kim DD, Fineman MS, Baron AD (2004) Effects of exenatide ­(exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes. Diabetes Care 27:2628–2635

    PubMed  CAS  Google Scholar 

  74. Kendall DM, Riddle MC, Rosenstock J et al. (2005) Effects of exenatide (exendin-4) on glycemic control over 30 weeks in patients with type 2 diabetes treated with metformin and a sulfonylurea. Diabetes Care 28:1083–1091

    PubMed  CAS  Google Scholar 

  75. Zinman B, Hoogwerf BJ, Duran Garcia S et al. (2007) The effect of adding exenatide to a thiazolidinedione in suboptimally controlled type 2 diabetes: a randomized trial. Ann Intern Med 146:477–485

    PubMed  Google Scholar 

  76. Riddle MC, Henry RR, Poon TH et al. (2006) Exenatide elicits sustained glycaemic control and progressive reduction of body weight in patients with type 2 diabetes inadequately controlled by sulphonylureas with or without metformin. Diabetes Metab Res Rev 22:483–491

    PubMed  CAS  Google Scholar 

  77. Ratner RE, Maggs D, Nielsen LL et al. (2006) Long-term effects of exenatide therapy over 82 weeks on glycaemic control and weight in over-weight metformin-treated patients with type 2 diabetes mellitus. Diabetes Obes Metab 8:419–428

    PubMed  CAS  Google Scholar 

  78. Heine RJ, Van Gaal LF, Johns D, Mihm MJ, Widel MH, Brodows RG (2005) Exenatide versus insulin glargine in patients with suboptimally controlled type 2 diabetes: a randomized trial. Ann Intern Med 143:559–569

    PubMed  CAS  Google Scholar 

  79. Vilsboll T, Zdravkovic M, Le-Thi T et al. (2007) Liraglutide, a long-acting human glucagon-like peptide-1 analog, given as monotherapy significantly improves glycemic control and lowers body weight without risk of hypoglycemia in patients with type 2 diabetes. Diabetes Care 30:1608–1610

    PubMed  Google Scholar 

  80. Garber A, Henry R, Ratner R et al. (2009) Liraglutide versus glimepiride monotherapy for type 2 diabetes (LEAD-3 Mono): a randomised, 52-week, phase III, double-blind, parallel-treatment trial. Lancet 373:473–481

    PubMed  CAS  Google Scholar 

  81. Nauck M, Marre M (2009) Adding liraglutide to oral antidiabetic drug monotherapy: efficacy and weight benefits. Postgrad Med 121:5–15

    PubMed  Google Scholar 

  82. Marre M, Shaw J, Brandle M et al. (2009) Liraglutide, a once-daily human GLP-1 analogue, added to a sulphonylurea over 26 weeks produces greater improvements in glycaemic and weight control compared with adding rosiglitazone or placebo in subjects with Type 2 diabetes (LEAD-1 SU). Diabet Med 26:268–278

    PubMed  CAS  Google Scholar 

  83. Zinman B, Gerich J, Buse JB et al. (2009) Efficacy and safety of the human glucagon-like ­peptide-1 analog liraglutide in combination with metformin and thiazolidinedione in patients with type 2 diabetes (LEAD-4 Met+TZD). Diabetes Care 32:1224–1230

    PubMed  CAS  Google Scholar 

  84. NDA 22-341 Victoza (Lariglutide {rDNA origin} injection). 2010. http://www.fda.gov/downloads/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/UCM202063.pdf. Accessed 18 March 2010

  85. Parks M, Rosebraugh C (2010) Weighing risks and benefits of liraglutide – the FDA’s review of a new antidiabetic therapy. N Engl J Med 362:774–777

    PubMed  CAS  Google Scholar 

  86. DeFronzo RA, Fleck PR, Wilson CA, Mekki Q (2008) Efficacy and safety of the dipeptidyl peptidase-4 inhibitor alogliptin in patients with type 2 diabetes and inadequate glycemic control: a randomized, double-blind, placebo-controlled study. Diabetes Care 31:2315–2317

    PubMed  CAS  Google Scholar 

  87. Raz I, Hanefeld M, Xu L, Caria C, Williams-Herman D, Khatami H (2006) Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy in patients with type 2 diabetes mellitus. Diabetologia 49:2564–2571

    PubMed  CAS  Google Scholar 

  88. Aschner P, Kipnes MS, Lunceford JK, Sanchez M, Mickel C, Williams-Herman DE (2006) Effect of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy on glycemic control in patients with type 2 diabetes. Diabetes Care 29:2632–2637

    PubMed  CAS  Google Scholar 

  89. Charbonnel B, Karasik A, Liu J, Wu M, Meininger G (2006) Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin added to ongoing metformin therapy in patients with type 2 diabetes inadequately controlled with metformin alone. Diabetes Care 29:2638–2643

    PubMed  CAS  Google Scholar 

  90. Goldstein BJ, Feinglos MN, Lunceford JK, Johnson J, Williams-Herman DE (2007) Effect of initial combination therapy with sitagliptin, a dipeptidyl peptidase-4 inhibitor, and metformin on glycemic control in patients with type 2 diabetes. Diabetes Care 30:1979–1987

    PubMed  CAS  Google Scholar 

  91. Nauck MA, Meininger G, Sheng D, Terranella L, Stein PP (2007) Efficacy and safety of the dipeptidyl peptidase-4 inhibitor, sitagliptin, compared with the sulfonylurea, glipizide, in patients with type 2 diabetes inadequately controlled on metformin alone: a randomized, double-blind, non-inferiority trial. Diabetes Obes Metab 9:194–205

    PubMed  CAS  Google Scholar 

  92. Rosenstock J, Brazg R, Andryuk PJ, Lu K, Stein P (2006) Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin added to ongoing pioglitazone therapy in patients with type 2 diabetes: a 24-week, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. Clin Ther 28:1556–1568

    PubMed  CAS  Google Scholar 

  93. Hermansen K, Kipnes M, Luo E, Fanurik D, Khatami H, Stein P (2007) Efficacy and safety of the dipeptidyl peptidase-4 inhibitor, sitagliptin, in patients with type 2 diabetes mellitus inadequately controlled on glimepiride alone or on glimepiride and metformin. Diabetes Obes Metab 9:733–745

    PubMed  CAS  Google Scholar 

  94. Malloy J, Capparelli E, Gottschalk M, Guan X, Kothare P, Fineman M (2009) Pharmacology and tolerability of a single dose of exenatide in adolescent patients with type 2 diabetes mellitus being treated with metformin: a randomized, placebo-controlled, single-blind, dose-escalation, crossover study. Clin Ther 31:806–815

    PubMed  CAS  Google Scholar 

  95. Edelman SV, Darsow T, Frias JP (2006) Pramlintide in the treatment of diabetes. Int J Clin Pract 60:1647–1653

    PubMed  CAS  Google Scholar 

  96. Chapman I, Parker B, Doran S et al. (2005) Effect of pramlintide on satiety and food intake in obese subjects and subjects with type 2 diabetes. Diabetologia 48:838–848

    PubMed  CAS  Google Scholar 

  97. Whitehouse F, Kruger DF, Fineman M et al. (2002) A randomized study and open-label extension evaluating the long-term efficacy of pramlintide as an adjunct to insulin therapy in type 1 diabetes. Diabetes Care 25:724–730

    PubMed  CAS  Google Scholar 

  98. Ratner RE, Dickey R, Fineman M et al. (2004) Amylin replacement with pramlintide as an adjunct to insulin therapy improves long-term glycaemic and weight control in Type 1 diabetes mellitus: a 1-year, randomized controlled trial. Diabet Med 21:1204–1212

    PubMed  CAS  Google Scholar 

  99. Ratner RE, Want LL, Fineman MS et al. (2002) Adjunctive therapy with the amylin analogue pramlintide leads to a combined improvement in glycemic and weight control in insulin-treated subjects with type 2 diabetes. Diabetes Technol Ther 4:51–61

    PubMed  CAS  Google Scholar 

  100. Chase HP, Lutz K, Pencek R, Zhang B, Porter L (2009) Pramlintide lowered glucose excursions and was well-tolerated in adolescents with type 1 diabetes: results from a randomized, single-blind, placebo-controlled, crossover study. J Pediatr 155:369–373

    PubMed  CAS  Google Scholar 

  101. Edelman S, Garg S, Frias J et al. (2006) A double-blind, placebo-controlled trial assessing pramlintide treatment in the setting of intensive insulin therapy in type 1 diabetes. Diabetes Care 29:2189–2195

    PubMed  CAS  Google Scholar 

  102. Levetan C, Want LL, Weyer C et al. (2003) Impact of pramlintide on glucose fluctuations and postprandial glucose, glucagon, and triglyceride excursions among patients with type 1 diabetes intensively treated with insulin pumps. Diabetes Care 26:1–8

    PubMed  CAS  Google Scholar 

  103. Hollander P, Maggs DG, Ruggles JA et al. (2004) Effect of pramlintide on weight in overweight and obese insulin-treated type 2 diabetes patients. Obes Res 12:661–668

    PubMed  CAS  Google Scholar 

  104. Weyer C, Gottlieb A, Kim DD et al. (2003) Pramlintide reduces postprandial glucose excursions when added to regular insulin or insulin lispro in subjects with type 1 diabetes: a dose-timing study. Diabetes Care 26:3074–3079

    PubMed  CAS  Google Scholar 

  105. Hollander PA, Levy P, Fineman MS et al. (2003) Pramlintide as an adjunct to insulin therapy improves long-term glycemic and weight control in patients with type 2 diabetes: a 1-year randomized controlled trial. Diabetes Care 26:784–790

    PubMed  CAS  Google Scholar 

  106. Sellers EA, Dean HJ (2004) Short-term insulin therapy in adolescents with type 2 diabetes mellitus. J Pediatr Endocrinol Metab 17:1561–1564

    PubMed  CAS  Google Scholar 

  107. Booth GL, Kapral MK, Fung K, Tu JV (2006) Relation between age and cardiovascular disease in men and women with diabetes compared with non-diabetic people: a population-based retrospective cohort study. Lancet 368:29–36

    PubMed  Google Scholar 

  108. Alexander CM, Landsman PB, Teutsch SM (2000) Diabetes mellitus, impaired fasting glucose, atherosclerotic risk factors, and prevalence of coronary heart disease. Am J Cardiol 86:897–902

    PubMed  CAS  Google Scholar 

  109. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) (2002) Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 106:3143–3421

    Google Scholar 

  110. De Backer G, Ambrosioni E, Borch-Johnsen K et al. (2003) European guidelines on cardiovascular disease prevention in clinical practice: third joint task force of European and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of eight societies and by invited experts). Eur J Cardiovasc Prev Rehabil 10:S1–S10

    PubMed  Google Scholar 

  111. Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M (1998) Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 339:229–234

    PubMed  CAS  Google Scholar 

  112. Kannel WB, McGee DL (1979) Diabetes and cardiovascular disease. The Framingham Study. JAMA 241:2035–2038

    PubMed  CAS  Google Scholar 

  113. Stamler J, Vaccaro O, Neaton JD, Wentworth D (1993) Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care 16:434–444

    PubMed  CAS  Google Scholar 

  114. American Diabetes Association (2010) Standards of medical care in diabetes – 2010. Diabetes Care 33(Suppl 1):S11–S61

    Google Scholar 

  115. American Diabetic Association (2010) Executive summary: standards of medical care in diabetes – 2010. Diabetes Care 33(Suppl 1):S4–S10

    Google Scholar 

  116. American Diabetes Association (2000) Type 2 diabetes in children and adolescents. Pediatrics 105(3 Pt 1):671–680

    Google Scholar 

  117. American Diabetes Association (2003) Management of dyslipidemia in children and adolescents with diabetes. Diabetes Care 26:2194–2197

    Google Scholar 

  118. Fagot-Campagna A, Pettitt DJ, Engelgau MM et al. (2000) Type 2 diabetes among North American children and adolescents: an epidemiologic review and a public health perspective. J Pediatr 136:664–672

    PubMed  CAS  Google Scholar 

  119. Dabelea D, Hanson RL, Bennett PH, Roumain J, Knowler WC, Pettitt DJ (1998) Increasing prevalence of Type II diabetes in American Indian children. Diabetologia 41:904–910

    PubMed  CAS  Google Scholar 

  120. Neufeld ND, Raffel LJ, Landon C, Chen YD, Vadheim CM (1998) Early presentation of type 2 diabetes in Mexican-American youth. Diabetes Care 21:80–86

    PubMed  CAS  Google Scholar 

  121. Pihoker C, Scott CR, Lensing SY, Cradock MM, Smith J (1998) Non-insulin dependent diabetes mellitus in African-American youths of Arkansas. Clin Pediatr (Phila) 37:97–102

    CAS  Google Scholar 

  122. Pinhas-Hamiel O, Dolan LM, Daniels SR, Standiford D, Khoury PR, Zeitler P (1996) Increased incidence of non-insulin-dependent diabetes mellitus among adolescents. J Pediatr 128(5 Pt 1): 608–615

    PubMed  CAS  Google Scholar 

  123. Dean HJ, Young TK, Flett B, Wood-Steiman P (1998) Screening for type-2 diabetes in aboriginal children in northern Canada. Lancet 352:1523–1524

    PubMed  CAS  Google Scholar 

  124. Huen KF, Low LC, Wong GW et al. (2000) Epidemiology of diabetes mellitus in children in Hong Kong: the Hong Kong childhood diabetes register. J Pediatr Endocrinol Metab 13:297–302

    PubMed  CAS  Google Scholar 

  125. Wei JN, Chuang LM, Lin CC, Chiang CC, Lin RS, Sung FC (2003) Childhood diabetes identified in mass urine screening program in Taiwan, 1993–1999. Diabetes Res Clin Pract 59:201–206

    PubMed  Google Scholar 

  126. Kitagawa T, Owada M, Urakami T, Yamauchi K (1998) Increased incidence of non-insulin dependent diabetes mellitus among Japanese schoolchildren correlates with an increased intake of animal protein and fat. Clin Pediatr (Phila) 37:111–115

    CAS  Google Scholar 

  127. Likitmaskul S, Kiattisathavee P, Chaichanwatanakul K, Punnakanta L, Angsusingha K, Tuchinda C (2003) Increasing prevalence of type 2 diabetes mellitus in Thai children and adolescents associated with increasing prevalence of obesity. J Pediatr Endocrinol Metab 16:71–77

    PubMed  CAS  Google Scholar 

  128. Braun B, Zimmermann MB, Kretchmer N, Spargo RM, Smith RM, Gracey M (1996) Risk factors for diabetes and cardiovascular disease in young Australian aborigines. A 5-year follow-up study. Diabetes Care 19:472–479

    PubMed  CAS  Google Scholar 

  129. Moe O, Berry C, Rector FJ (1996) Renal transport of glucose, amino acids, sodium, chloride and water. In: Brenner B (ed) Brenner and rector’s the kidney, 5th edn. WB Saunders, Philadelphiapp 375–415

    Google Scholar 

  130. Han S, Hagan DL, Taylor JR et al. (2008) Dapagliflozin, a selective SGLT2 inhibitor, improves glucose homeostasis in normal and diabetic rats. Diabetes 57:1723–1729

    PubMed  CAS  Google Scholar 

  131. Deetjen P, Von Baeyer H, Drexel H (1992) Renal glucose transport. In: Seldin D, Giebisch G (eds) Seldin and Giebisch’s the kidney, 2nd edn. Raven Press, New York, pp 2873–2888

    Google Scholar 

  132. Rossetti L, Smith D, Shulman GI, Papachristou D, DeFronzo RA (1987) Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. J Clin Invest 79:1510–1515

    PubMed  CAS  Google Scholar 

  133. Kahn BB, Shulman GI, DeFronzo RA, Cushman SW, Rossetti L (1991) Normalization of blood glucose in diabetic rats with phlorizin treatment reverses insulin-resistant glucose transport in adipose cells without restoring glucose transporter gene expression. J Clin Invest 87:561–570

    PubMed  CAS  Google Scholar 

  134. Dimitrakoudis D, Vranic M, Klip A (1992) Effects of hyperglycemia on glucose transporters of the muscle: use of the renal glucose reabsorption inhibitor phlorizin to control glycemia. J Am Soc Nephrol 3:1078–1091

    PubMed  CAS  Google Scholar 

  135. Shi ZQ, Rastogi KS, Lekas M, Efendic S, Drucker DJ, Vranic M (1996) Glucagon response to hypoglycemia is improved by insulin-independent restoration of normoglycemia in diabetic rats. Endocrinology 137:3193–3199

    PubMed  CAS  Google Scholar 

  136. Marette A, Dimitrakoudis D, Shi Q, Rodgers CD, Klip A, Vranic M (1999) Glucose rapidly decreases plasma membrane GLUT4 content in rat skeletal muscle. Endocrine 10:13–18

    PubMed  CAS  Google Scholar 

  137. Kim JK, Zisman A, Fillmore JJ et al. (2001) Glucose toxicity and the development of diabetes in mice with muscle-specific inactivation of GLUT4. J Clin Invest 108:153–160

    PubMed  CAS  Google Scholar 

  138. Oku A, Ueta K, Arakawa K et al. (2000) Antihyperglycemic effect of T-1095 via inhibition of renal Na+-glucose cotransporters in streptozotocin-induced diabetic rats. Biol Pharm Bull 23:1434–1437

    PubMed  CAS  Google Scholar 

  139. Baranowski T, Cooper DM, Harrell J et al. (2006) Presence of diabetes risk factors in a large U.S. eighth-grade cohort. Diabetes Care 29:212–217

    PubMed  CAS  Google Scholar 

  140. Zeitler P, Epstein L, Grey M et al. (2007) Treatment options for type 2 diabetes in adolescents and youth: a study of the comparative efficacy of metformin alone or in combination with rosiglitazone or lifestyle intervention in adolescents with type 2 diabetes. Pediatr Diabetes 8:74–87

    PubMed  CAS  Google Scholar 

  141. August GP, Caprio S, Fennoy I et al. (2008) Prevention and treatment of pediatric obesity: an endocrine society clinical practice guideline based on expert opinion. J Clin Endocrinol Metab 93:4576–4599

    PubMed  CAS  Google Scholar 

  142. McGovern L, Johnson JN, Paulo R et al. (2008) Clinical review: treatment of pediatric obesity: a systematic review and meta-analysis of randomized trials. J Clin Endocrinol Metab 93:4600–4605

    PubMed  CAS  Google Scholar 

  143. Berkowitz RI, Wadden TA, Tershakovec AM, Cronquist JL (2003) Behavior therapy and sibutramine for the treatment of adolescent obesity: a randomized controlled trial. JAMA 289:1805–1812

    PubMed  CAS  Google Scholar 

  144. McMahon FG, Weinstein SP, Rowe E, Ernst KR, Johnson F, Fujioka K (2002) Sibutramine is safe and effective for weight loss in obese patients whose hypertension is well controlled with angiotensin-converting enzyme inhibitors. J Hum Hypertens 16:5–11

    PubMed  CAS  Google Scholar 

  145. Sramek JJ, Leibowitz MT, Weinstein SP et al. (2002) Efficacy and safety of sibutramine for weight loss in obese patients with hypertension well controlled by beta-adrenergic blocking agents: a placebo-controlled, double-blind, randomised trial. J Hum Hypertens 16:13–19

    PubMed  CAS  Google Scholar 

  146. Kim SH, Lee YM, Jee SH, Nam CM (2003) Effect of sibutramine on weight loss and blood pressure: a meta-analysis of controlled trials. Obes Res 11(9):1116–1123

    PubMed  CAS  Google Scholar 

  147. James WP, Caterson ID, Coutinho W et al. (2010) Effect of sibutramine on cardiovascular outcomes in overweight and obese subjects. N Engl J Med 363:905–917

    PubMed  CAS  Google Scholar 

  148. http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/DrugSafetyInformationforHeathcareProfessionals/ucm198206.htm. Accessed 10 Sept 2010

  149. Williams G (2010) Withdrawal of sibutramine in Europe. BMJ 340:c824

    PubMed  Google Scholar 

  150. http://wwww.abbott.com/global/url/pressRelease/en_US/Press_Release_0908.htm. Accessed 15 Feb 2011.

  151. Ehrmann DA (2005) Polycystic ovary syndrome. N Engl J Med 352:1223–1236

    PubMed  CAS  Google Scholar 

  152. Nestler JE (2008) Metformin for the treatment of the polycystic ovary syndrome. N Engl J Med 358:47–54

    PubMed  CAS  Google Scholar 

  153. Sharma ST, Wickham EP III, Nestler JE (2007) Changes in glucose tolerance with metformin treatment in polycystic ovary syndrome: a retrospective analysis. Endocr Pract 13:373–379

    PubMed  Google Scholar 

  154. Glueck CJ, Goldenberg N, Pranikoff J, Loftspring M, Sieve L, Wang P (2004) Height, weight, and motor-social development during the first 18 months of life in 126 infants born to 109 mothers with polycystic ovary syndrome who conceived on and continued metformin through pregnancy. Hum Reprod 19:1323–1330

    PubMed  CAS  Google Scholar 

  155. Glueck CJ, Bornovali S, Pranikoff J, Goldenberg N, Dharashivkar S, Wang P (2004) Metformin, pre-eclampsia, and pregnancy outcomes in women with polycystic ovary syndrome. Diabet Med 21:829–836

    PubMed  CAS  Google Scholar 

  156. Nestler JE (2008) Metformin in the treatment of infertility in polycystic ovarian syndrome: an alternative perspective. Fertil Steril 90:14–16

    PubMed  CAS  Google Scholar 

  157. Harborne L, Fleming R, Lyall H, Norman J, Sattar N (2003) Descriptive review of the evidence for the use of metformin in polycystic ovary syndrome. Lancet 361:1894–1901

    PubMed  CAS  Google Scholar 

  158. Attia GR, Rainey WE, Carr BR (2001) Metformin directly inhibits androgen production in human thecal cells. Fertil Steril 76:517–524

    PubMed  CAS  Google Scholar 

  159. Crave JC, Fimbel S, Lejeune H, Cugnardey N, Dechaud H, Pugeat M (1995) Effects of diet and metformin administration on sex hormone-binding globulin, androgens, and insulin in hirsute and obese women. J Clin Endocrinol Metab 80:2057–2062

    PubMed  CAS  Google Scholar 

  160. Mansfield R, Galea R, Brincat M, Hole D, Mason H (2003) Metformin has direct effects on human ovarian steroidogenesis. Fertil Steril 79:956–962

    PubMed  Google Scholar 

  161. Ehrmann DA, Schneider DJ, Sobel BE et al. (1997) Troglitazone improves defects in insulin action, insulin secretion, ovarian steroidogenesis, and fibrinolysis in women with polycystic ovary syndrome. J Clin Endocrinol Metab 82:2108–2116

    PubMed  CAS  Google Scholar 

  162. Dunaif A, Scott D, Finegood D, Quintana B, Whitcomb R (1996) The insulin-sensitizing agent troglitazone improves metabolic and reproductive abnormalities in the polycystic ovary syndrome. J Clin Endocrinol Metab 81:3299–3306

    PubMed  CAS  Google Scholar 

  163. Silverstein JH, Rosenbloom AL (2000) Treatment of type 2 diabetes mellitus in children and adolescents. J Pediatr Endocrinol Metab 13(Suppl 6):1403–1409

    PubMed  Google Scholar 

  164. Byetta® package insert. San Diego: Amylin Pharmaceuticals Inc. and Eli Lilly & Co.; Sept 2010

    Google Scholar 

  165. Victoza® package insert. Princeton: Novo Nordisk Inc.; Jan 2010

    Google Scholar 

  166. Januvia® package insert. Whitehouse Station: Merk & Co. Inc.; June 2009

    Google Scholar 

  167. Onglyza® package insert. Princeton: Bristo-Myers Squibb Inc.; July 2009

    Google Scholar 

  168. Levemir® package insert. Princeton: Novo Nordisk Inc.; July 2009

    Google Scholar 

  169. Novolog® package insert. Princeton: Novo Nordisk Inc.; March 2010

    Google Scholar 

  170. Novolin R® package insert. Princeton: Novo Nordisk Inc.; June 2009

    Google Scholar 

  171. Novolin N® package insert. Princeton: Novo Nordisk Inc.; June 2009

    Google Scholar 

  172. Plank J, Bodenlenz M, Sinner F et al. (2005) A double-blind, randomized, dose-response study investigating the pharmacodynamic and pharmacokinetic properties of the long-acting insulin analog detemir. Diabetes Care 28:1107–1112

    PubMed  CAS  Google Scholar 

  173. Apidra® package insert. Bridgewater: Sanofi-Aventis Inc.; Feb 2009

    Google Scholar 

  174. Humalog® package insert. Indianapolis: Eli Lilly & Co.; Sept 2009

    Google Scholar 

  175. Freemark M (2007) Pharmacotherapy of childhood obesity: an evidence-based, conceptual approach. Diabetes Care 30:395–402

    PubMed  CAS  Google Scholar 

  176. Chanoine JP, Hampl S, Jensen C, Boldrin M, Hauptman J (2005) Effect of orlistat on weight and body composition in obese adolescents: a randomized controlled trial. JAMA 293:2873–2883

    PubMed  CAS  Google Scholar 

  177. Freemark M, Bursey D (2001) The effects of metformin on body mass index and glucose tolerance in obese adolescents with fasting hyperinsulinemia and a family history of type 2 diabetes. Pediatrics 107:E55

    PubMed  CAS  Google Scholar 

  178. Kay JP, Alemzadeh R, Langley G, D’Angelo L, Smith P, Holshouser S (2001) Beneficial effects of metformin in normoglycemic morbidly obese adolescents. Metabolism 50:1457–1461

    PubMed  CAS  Google Scholar 

  179. Stafler P, Wallis C (2008) Prader–Willi syndrome: who can have growth hormone? Arch Dis Child 93:341–345

    PubMed  CAS  Google Scholar 

  180. Lustig RH, Hinds PS, Ringwald-Smith K et al. (2003) Octreotide therapy of pediatric hypothalamic obesity: a double-blind, placebo-controlled trial. J Clin Endocrinol Metab 88:2586–2592

    PubMed  CAS  Google Scholar 

  181. Lustig RH, Rose SR, Burghen GA et al. (1999) Hypothalamic obesity caused by cranial insult in children: altered glucose and insulin dynamics and reversal by a somatostatin agonist. J Pediatr 135(2 Pt 1):162–168

    PubMed  CAS  Google Scholar 

  182. Farooqi IS, Matarese G, Lord GM et al. (2002) Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest 110:1093–1103

    PubMed  CAS  Google Scholar 

  183. Farooqi IS, Jebb SA, Langmack G et al. (1999) Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med 341:879–884

    PubMed  CAS  Google Scholar 

  184. Wilding J, Van Gaal L, Rissanen A, Vercruysse F, Fitchet M (2004) A randomized double-blind placebo-controlled study of the long-term efficacy and safety of topiramate in the treatment of obese subjects. Int J Obes Relat Metab Disord 28:1399–1410

    PubMed  CAS  Google Scholar 

  185. Kwiterovich PO Jr (2008) Recognition and management of dyslipidemia in children and adolescents. J Clin Endocrinol Metab 93:4200–4209

    PubMed  CAS  Google Scholar 

  186. Robertson RP. Antagonist: diabetes and insulin resistance – philosophy, science, and the multiplier hypothesis. J Lab Clin Med 1995;125:560–564; discussion 565

    Google Scholar 

  187. Beck-Nielsen H, Groop LC (1994) Metabolic and genetic characterization of prediabetic states. Sequence of events leading to non-insulin-dependent diabetes mellitus. J Clin Invest 94:1714–1721

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pongsuwan, P. (2011). Pharmacologic Approaches to Type 2 Diabetes and Obesity in Children and Adolescents. In: Ferry, Jr., R. (eds) Management of Pediatric Obesity and Diabetes. Nutrition and Health. Humana Press. https://doi.org/10.1007/978-1-60327-256-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-256-8_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-255-1

  • Online ISBN: 978-1-60327-256-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics