Skip to main content

Metalloproteomics in the Molecular Study of Cell Physiology and Disease

  • Protocol
2D PAGE: Sample Preparation and Fractionation

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 425))

Summary

Physical and chemical stresses as well as metal-related diseases can disrupt the normal trafficking of metal ions. Moreover, homeostatic imbalance of such metal ions may modulate essential cellular functions (including signal transduction pathways), may catalyze oxidative damage, and may affect the folding of nascent proteins. Here we describe a new qualitative subproteomic method for the detection, isolation, and identification of metal-interacting proteins. Combining both classical immobilized metal ion affinity chromatography (IMAC) and modern proteomic techniques (e.g., two dimensional gel electrophoresis [2-DE]), metal-specific proteins have been successfully isolated and identified to define a metalloproteome. These metal-specific proteomes may give new insights into metal-related pathophysiological processes, such as the allergic reaction to nickel, which represents the most common form of human contact hypersensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Porath, J., Carlsson, J., Olsson, I., and Belfrage, G. (1975) Metal chelate affinity chromatography, a new approach to protein fractionation. Nature. 258, 598–9.

    Article  CAS  PubMed  Google Scholar 

  2. Porath, J. (1992) Immobilized metal ion affinity chromatography. Protein Expr. Purif. 3, 263–81.

    Article  CAS  PubMed  Google Scholar 

  3. Mondal, K. and Gupta, M. N. (2006) The affinity concept in bioseparation: evolving paradigms and expanding range of applications. Biomol. Eng. 23, 59–76.

    Article  CAS  PubMed  Google Scholar 

  4. Sun, X., Chiu, J. F., and He, Q. Y. (2005) Application of immobilized metal affinity chromatography in proteomics. Expert Rev. Proteomics. 2, 649–57.

    Article  CAS  PubMed  Google Scholar 

  5. Ueda, E. K., Gout, P. W., and Morganti, L. (2003) Current and prospective applications of metal ion-protein binding. J. Chromatogr. A. 988, 1–23.

    Article  CAS  PubMed  Google Scholar 

  6. Hochuli, E., Dobeli, H., and Schacher, A. (1987) New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. J. Chromatogr. 411, 177–84.

    Article  CAS  PubMed  Google Scholar 

  7. Terpe, K. (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol. 60, 523–33.

    CAS  PubMed  Google Scholar 

  8. Harlow, E., and Lane, D. (1988) Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  9. Schmitt, J., Hess, H., and Stunnenberg, H. G. (1993) Affinity purification of histidine-tagged proteins. Mol. Biol. Rep.18, 223–30.

    Article  CAS  PubMed  Google Scholar 

  10. Corthals, G. L., Aebersold, R., and Goodlett, D. R. (2005) Identification of phosphorylation sites using microimmobilized metal affinity chromatography. Methods Enzymol. 405, 66–81.

    Article  CAS  PubMed  Google Scholar 

  11. Bollen, M. and Beullens, M. (2002) Signaling by protein phosphatases in the nucleus. Trends Cell Biol. 12, 138–45.

    Article  CAS  PubMed  Google Scholar 

  12. Zhou, W., Merrick, B. A., Khaledi, M. G., and Tomer, K. B. (2000) Detection and sequencing of phosphopeptides affinity bound to immobilized metal ion beads by matrix-assisted laser desorption/ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 11, 273–82.

    Article  CAS  PubMed  Google Scholar 

  13. Hata, K., Morisaka, H., Hara, K., et al. (2006) Two-dimensional HPLC on-line analysis of phosphopeptides using titania and monolithic columns. Anal. Biochem. 350, 292–7.

    Article  CAS  PubMed  Google Scholar 

  14. Larsen, M. R., Thingholm, T. E., Jensen, O. N., Roepstorff, P., and Jorgensen, T. J. (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol. Cell Proteomics. 4, 873–86.

    Article  CAS  PubMed  Google Scholar 

  15. Wolschin, F., Wienkoop, S., and Weckwerth, W. (2005) Enrichment of phosphorylated proteins and peptides from complex mixtures using metal oxide/hydroxide affinity chromatography (MOAC). Proteomics. 5, 4389–97.

    Article  CAS  PubMed  Google Scholar 

  16. Gorg, A., Obermaier, C., Boguth, G., et al.(2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis. 21, 1037–53.

    Article  CAS  PubMed  Google Scholar 

  17. Gorg, A., Weiss, W., and Dunn, M. J. (2004) Current two-dimensional electrophoresis technology for proteomics. Proteomics. 4, 3665–85.

    Article  PubMed  Google Scholar 

  18. Klose, J. (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik. 26, 231–43.

    CAS  PubMed  Google Scholar 

  19. O’Farrell, P. H. (1975) High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007–21.

    PubMed  Google Scholar 

  20. Thierse, H. J., Moulon, C., Allespach, Y., et al. (2004) Metal-protein complex-mediated transport and delivery of Ni2+ to TCR/MHC contact sites in nickel-specific human T cell activation. J. Immunol. 172, 1926–34.

    CAS  PubMed  Google Scholar 

  21. Heiss, K., Junkes, C., Guerreiro, N., , et al. (2005) Subproteomic analysis of metal-interacting proteins in human B cells. Proteomics. 5, 3614–22.

    Article  CAS  PubMed  Google Scholar 

  22. She, Y. M., Narindrasorasak, S., Yang, S., Spitale, N., Roberts, E. A., and Sarkar, B. (2003) Identification of metal-binding proteins in human hepatoma lines by immobilized metal affinity chromatography and mass spectrometry. Mol. Cell. Proteomics. 2, 1306–18.

    Article  CAS  PubMed  Google Scholar 

  23. Smith, S. D., She, Y. M., Roberts, E. A., and Sarkar, B. (2004) Using immobilized metal affinity chromatography, two-dimensional electrophoresis and mass spectrometry to identify hepatocellular proteins with copper-binding ability. J. Proteome Res. 3, 834–40.

    Article  CAS  PubMed  Google Scholar 

  24. Kulkarni, P. P., She, Y. M., Smith, S. D., Roberts, E. A., and Sarkar, B. (2006) Proteomics of metal transport and metal-associated diseases. Chemistry. 12, 2410–22.

    Article  CAS  PubMed  Google Scholar 

  25. Martin, S. F., Merfort, I., and Thierse, H. J. (2006) Interactions of chemicals and metal ions with proteins and role for immune responses. Mini Rev. Med. Chem. 6, 247–55.

    Article  CAS  PubMed  Google Scholar 

  26. Jungblut, P., Baumeister, H., and Klose, J. (1993) Classification of mouse liver proteins by immobilized metal affinity chromatography and two-dimensional electrophoresis. Electrophoresis. 14, 638–43.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Doris Wild and Stefanie Eikelmeier for excellent technical assistance, and Dr. Ian Haidl, Depts. of Pediatrics, Microbiology and Immunology, Halifax, Canada, for very careful reading of the manuscript. This work was supported in part by the Landesstiftung Baden-Wüerttemberg, Germany, Forschungsprogramm “Allergologie” by grant P-LS-AL/26 (to HJT), and the European Union, as part of the project Novel Testing Strategies for In Vitro Assessment of Allergens (Sens-it-iv), LSHB-CT-2005 – 018681, (www.sens-it-iv.eu).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Thierse, HJ., Helm, S., Pankert, P. (2008). Metalloproteomics in the Molecular Study of Cell Physiology and Disease. In: Posch, A. (eds) 2D PAGE: Sample Preparation and Fractionation. Methods in Molecular Biology™, vol 425. Humana Press. https://doi.org/10.1007/978-1-60327-210-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-210-0_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-209-4

  • Online ISBN: 978-1-60327-210-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics