Skip to main content

Gene Delivery to Mesenchymal Stem Cells

  • Protocol
Mesenchymal Stem Cells

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 449))

Abstract

Successful gene therapy technology relies on the delivery of the therapeutic product into appropriate target cells. Gene delivery to mesenchymal stem cells (MSCs) has been proposed as a mechanism to promote the augmentation of tissue-engineered replacement systems. In particular, MSCs are attractive targets for gene delivery systems, because they can differentiate, in response to various molecular signals, into many types of committed cells. Introduction of transgene of interest into autologous stem cell types poses an attractive cell-based delivery strategy. MSCs divide rapidly and, because of their high amphotropic receptor levels, are readily transducible with integrating vectors and maintain transgene expression in vitro and in vivo without affecting multipotentiality. The unique biology of MSCs predetermines them to become valuable cytoreagents for gene therapy approaches in future. This chapter describes methods and associated materials for transducing mesenchymal stem cells with a desired nucleic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Krause, D. S., et al., (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell, 105(3): 369–377.

    Article  CAS  PubMed  Google Scholar 

  2. 2. Morizono, K., et al., (2003) Multilineage cells from adipose tissue as gene delivery vehicles. Hum. Gene Ther. 14(1):59–66.

    Article  CAS  PubMed  Google Scholar 

  3. 3. Hamada, H., et al., (2005) Mesenchymal stem cells (MSC) as therapeutic cytoreagents for gene therapy. Cancer Sci. 96(3): 149–156.

    Article  CAS  PubMed  Google Scholar 

  4. 4. Scherr, M. and Eder, M., (2002) Gene transfer into hematopoietic stem cells using lentiviral vectors. Curr. Gene Ther. 2(1): 45–55.

    Article  CAS  PubMed  Google Scholar 

  5. 5. Davis, B. M., Humeau, L., and Dropulic, B. (2004) In vivo selection for human and murine hematopoietic cells transduced with a therapeutic MGMT lentiviral vector that inhibits HIV replication. Mol. Ther. 9(2): 160–172.

    Article  CAS  PubMed  Google Scholar 

  6. 6. Haviernik, P. and Bunting, K. D. (2004) Safety concerns related to hematopoietic stem cell gene transfer using retroviral vectors. Curr. Gene Ther. 4(3): 263–276.

    CAS  PubMed  Google Scholar 

  7. 7. Colter, D. C., et al., (2000) Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc. Natl Acad. Sci. U S A. 97(7): 3213–3218.

    Article  CAS  PubMed  Google Scholar 

  8. 8. Izadpanah, R., et al., (2005) Characterization of multipotent mesenchymal stem cells from the bone marrow of rhesus macaques. Stem Cells Dev. 14(4): 440–451.

    Article  CAS  PubMed  Google Scholar 

  9. 9. Friedenstein, A. J., (1976) Precursor cells of mechanocytes. Int. Rev. Cytol. 47: 327–359.

    Article  CAS  PubMed  Google Scholar 

  10. 10. Howlett, C. R., et al., (1986) Mineralization in in vitro cultures of rabbit marrow stromal cells. Clin. Orthop. 213: 251–263.

    PubMed  Google Scholar 

  11. 11. Lackner, A. A., et al., (1988) Distribution of a macaque immunosuppressive type D retrovirus in neural, lymphoid, and salivary tissues. J. Virol. 62(6): 2134–2142.

    CAS  PubMed  Google Scholar 

  12. 12. Kanazawa, T., et al., (2001) Gamma-rays enhance rAAV-mediated transgene expression and cytocidal effect of AAV-HSVtk/ganciclovir on cancer cells. Cancer Gene Ther. 8(2): 99–106.

    Article  CAS  PubMed  Google Scholar 

  13. 13. Pittenger, M. F., et al., (1999) Multilineage potential of adult human mesenchymal stem cells. Science. 284(5411): 143–147.

    Article  CAS  PubMed  Google Scholar 

  14. 14. Mezey, E., et al., (2000) Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science. 290(5497): 1779–1782.

    Article  CAS  PubMed  Google Scholar 

  15. 15. Orlic, D., (2003) Adult bone marrow stem cells regenerate myocardium in ischemic heart disease. Ann. N Y Acad. Sci. 996: 152–157.

    Article  PubMed  Google Scholar 

  16. 16. Ferrari, G., et al., (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science. 279(5356): 1528–1530.

    Article  CAS  PubMed  Google Scholar 

  17. 17. Theise, N. D., et al., (2000) Liver from bone marrow in humans. Hepatology. 32(1): 11–16.

    Article  CAS  PubMed  Google Scholar 

  18. 18. Eglitis, M. A. and Mezey, E. (1997) Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc. Natl Acad. Sci. U S A. 94(8): 4080–4085.

    Article  CAS  PubMed  Google Scholar 

  19. 19. Kascsak, R. J., et al., (1982) Virological studies in amyotrophic lateral sclerosis. Muscle Nerve. 5(2): 93–101.

    Article  CAS  PubMed  Google Scholar 

  20. 20. Zuk, P.A., et al., (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7(2): 211–228.

    Article  CAS  PubMed  Google Scholar 

  21. 21. Zuk, P. A., et al., (2002) Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell. 13(12): 4279–4295.

    Article  CAS  PubMed  Google Scholar 

  22. 22. Mizuno, H., et al., (2002) Myogenic differentiation by human processed lipoaspirate cells. Plast. Reconstr. Surg. 109(1): 199–209; discussion 210–211.

    Article  PubMed  Google Scholar 

  23. 23. Abdallah, B., Sachs, L., and Demeneix, B. A. (1995) Non-viral gene transfer: applications in developmental biology and gene therapy. Biol. Cell. 85(1): 1–7.

    Article  CAS  PubMed  Google Scholar 

  24. Bosch, P., Pratt, S. L. and Stice, S. L. Isolation, characterization, gene modification and nuclear reprogramming of porcine mesenchymal stem cells. Biol Reprod. 2005.

    Google Scholar 

  25. 25. Conget, P. A., Allers, C. and Minguell, J.J. (2001) Identification of a discrete population of human bone marrow-derived mesenchymal cells exhibiting properties of uncommitted progenitors. J. Hematother. Stem Cell Res. 10(6): 749–758.

    Article  CAS  PubMed  Google Scholar 

  26. 26. Kumar, S., et al., (2004) Osteogenic differentiation of recombinant adeno-associated virus 2-transduced murine mesenchymal stem cells and development of an immunocompetent mouse model for ex vivo osteoporosis gene therapy. Hum. Gene Ther. 15(12): 1197–1206.

    Article  CAS  PubMed  Google Scholar 

  27. 27. Lee, K., et al., (2001) Human mesenchymal stem cells maintain transgene expression during expansion and differentiation. Mol. Ther. 3(6): 857–866.

    Article  CAS  PubMed  Google Scholar 

  28. 28. Lu, L., et al., (2005) Therapeutic benefit of TH-engineered mesenchymal stem cells for Parkinson's disease. Brain Res. Brain Res. Protoc. 15(1): 46–51.

    Article  CAS  PubMed  Google Scholar 

  29. 29. Lu, S., et al., (2005) (Construction of an adeno-associated virus vector expressing CTLA-4Ig and its expression in the transplanted liver allografts). Zhonghua Gan Zang Bing Za Zhi, 13(3): 183–186.

    CAS  PubMed  Google Scholar 

  30. 30. Van Damme, A., et al., (2004) Onco-retroviral and lentiviral vector-based gene therapy for hemophilia: preclinical studies. Semin. Thromb. Hemost. 30(2): 185–195.

    Article  PubMed  Google Scholar 

  31. 31. Zhang, X.Y., La Russa, V.F. and Reiser, J. (2004) Transduction of bone-marrow-derived mes-enchymal stem cells by using lentivirus vectors pseudotyped with modified RD114 envelope glycoproteins. J. Virol. 78(3): 1219–1229.

    Article  CAS  PubMed  Google Scholar 

  32. 32. Naldini, L., (1998) Lentiviruses as gene transfer agents for delivery to non-dividing cells. Curr. Opin. Biotechnol. 9(5): 457–463.

    Article  CAS  PubMed  Google Scholar 

  33. 33. Naldini, L., et al., (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science. 272(5259): 263–267.

    Article  CAS  PubMed  Google Scholar 

  34. 34. Miyoshi, H., et al., (1998) Development of a self-inactivating lentivirus vector. J Virol. 72(10): 8150–8157.

    CAS  PubMed  Google Scholar 

  35. 35. Zhang, B., et al., (2004) The significance of controlled conditions in lentiviral vector titration and in the use of multiplicity of infection (MOI) for predicting gene transfer events. Genet. Vaccines Ther. 2(1): 6.

    Article  Google Scholar 

  36. 36. Skipski, V.P., Smolowe, A.F. and Barclay, M. (1967) Separation of neutral glycosphingolipids and sulfatides by thin-layer chromatography. J. Lipid Res. 8(4): 295–299.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Izadpanah, R., Bunnell, B.A. (2008). Gene Delivery to Mesenchymal Stem Cells. In: Prockop, D.J., Bunnell, B.A., Phinney, D.G. (eds) Mesenchymal Stem Cells. Methods in Molecular Biology™, vol 449. Humana Press. https://doi.org/10.1007/978-1-60327-169-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-169-1_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-771-6

  • Online ISBN: 978-1-60327-169-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics