Skip to main content

Artificial Intelligence Methods for Predicting T-Cell Epitopes

  • Protocol
Immunoinformatics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 409))

Summary

Identifying epitopes that elicit a major histocompatibility complex (MHC)-restricted T-cell response is critical for designing vaccines for infectious diseases and cancers. We have applied two artificial intelligence approaches to build models for predicting T-cell epitopes. We developed a support vector machine to predict T-cell epitopes for an MHC class I-restricted T-cell clone (TCC) using synthesized peptide data. For predicting T-cell epitopes for an MHC class IIrestricted TCC, we built a shift model that integrated MHC-binding data and data from T-cell proliferation assay against a combinatorial library of peptide mixtures

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vapnik, V. N. (ed.) (1995) The Nature of Statistical Learning Theory. Springer-Verlag, New York.

    Google Scholar 

  2. Zhao, Y., Pinilla, C., Valmori, D., Martin, R., and Simon, R. (2003) Application of support vector machines in T-cell epitope prediction. Bioinformatics 19, 1978–1984.

    Article  CAS  PubMed  Google Scholar 

  3. Sung, M.H., Zhao, Y., Martin, R., and Simon, R. (2002) T-cell epitope prediction with combinatorial peptide libraries. J. Comput. Biol. 9, 527–539.

    Article  CAS  PubMed  Google Scholar 

  4. Houghten, R.A. (1985) General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc. Natl. Acad. Sci. U.S.A. 82, 5131–5135.

    Article  CAS  PubMed  Google Scholar 

  5. Zhao, Y., Gran, B., Pinilla, C., Markovic-Plese, S., Hemmer, B., Tzou, A., Whitney, L. W., Biddison, W. E., Martin, R., and Simon, R. (2001) Combinatorial peptide libraries and biometric score matrices permit the quantitative analysis of specific and degenerate interactions between clonotypic T-cell receptors and MHC-peptide ligands. J. Immunol. 167, 2130–2141.

    CAS  PubMed  Google Scholar 

  6. Rubio-Godoy, V., Dutoit, V., Zhao, Y., Simon, R., Guillaume, P., Houghten, R.A., Romero, P., Cerottini, J.C., Pinilla, C., and Valmori, D. (2002) Positional scanning-synthetic peptide library-based analysis of self- and pathogen-derived peptide cross-reactivity with tumor-reactive Melan-A-specific CTL. J. Immunol. 169, 5696–5707.

    CAS  PubMed  Google Scholar 

  7. Hammer, J., Belunis, C., Bolin, D., Papadopoulos, J., Walsky, R., Higelin, J., Danho, W., Sinigaglia, F., and Nagy, Z.A. (1994) High-affinity binding of short peptides to major histocompatibility complex class II molecules by anchor combinations. Proc. Natl. Acad. Sci. U.S.A. 91, 4456–4460.

    Article  CAS  PubMed  Google Scholar 

  8. Hammer, J., Bono, E., Gallazzi, F., Belunis, C., Nagy, Z., and Sinigaglia, F. (1994) Precise prediction of major histocompatibility complex class II-peptide interaction based on peptide side chain scanning. J. Exp. Med. 180, 2353–2358.

    Article  CAS  PubMed  Google Scholar 

  9. Sturniolo, T., Bono, E., Ding, J., Raddrizzani, L., Tuereci, O., Sahin, U., Braxenthaler, M., Gallazzi, F., Protti, M.P., Sinigaglia, F., and Hammer, J. (1999) Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices . Nat. Biotechnol. 17, 555–561.

    Article  CAS  PubMed  Google Scholar 

  10. Kidera, A., Konishi, Y., Oka, M., Ooi, T., and Scheraga, H.A. (1985) Statistical analysis of the physical properties of the 20 naturally occuring amino acids. J. Protein Chem. 4, 23–55.

    Article  CAS  Google Scholar 

  11. Joachim, T. (1999) Making large scale SVM learning practical, In Advances in Kernel Methods-Support Vector Learning. MIT press, Cambridge.

    Google Scholar 

  12. Swets, J. (1988) Measuring the accuracy of diagnostic systems. Science 240, 1285–1293.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Zhao, Y., Sung, MH., Simon, R. (2007). Artificial Intelligence Methods for Predicting T-Cell Epitopes. In: Flower, D.R. (eds) Immunoinformatics. Methods in Molecular Biology™, vol 409. Humana Press. https://doi.org/10.1007/978-1-60327-118-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-118-9_15

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-699-3

  • Online ISBN: 978-1-60327-118-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics