Skip to main content

Part of the book series: Methods in Molecular Biology ((MIMB,volume 429))

Abstract

HyBeacon probes are single-stranded oligonucleotides with one or more internal base(s) labeled with a fluorescent dye. When a probe forms a duplex with its target sequence, the level of fluorescence emission increases considerably. HyBeacons have been developed as new tools for rapid sequence detection and discrimination and have been employed in a wide variety of applications including infectious diagnostics and analysis of human polymorphisms. Single-labeled (FVG1) and dual-labeled (FVG11) probes were designed to analyze the factor V Leiden (R506Q) polymorphism which causes an increased risk of deep vein thrombosis and pulmonary embolism. Detection and identification of factor V alleles is performed by melting curve analysis and determination of probe melting temperature (T m). HyBeacon hybridization to the glutamine allele (Q) causes the formation of mismatched DNA duplexes that are detected through decreases in T m. HyBeacon probes are included in homogeneous PCR assays to genotype samples with respect to the factor V polymorphism within 20 min, using purified DNAs and unpurified saliva/blood samples. This paper describes the preparation of homogeneous PCR assays, LightCycler target amplification, and subsequent melting curve analysis. This chapter also describes the use of homologous oligonucleotides and melting curve analysis as a method for probe evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCarthy, J. J. and Hilfiker, R. (2000) The use of single-nucleotide polymorphism maps in pharmacogenomics. Nat. Biotechnol. 18, 505–508.

    Article  CAS  PubMed  Google Scholar 

  2. Kwok, P. Y. and Gu, Z. (1999) Single nucleotide polymorphism libraries: why and how are we building them? Mol. Med. Today 5, 538543.

    Article  Google Scholar 

  3. Brookes, A. J. (1999) The essence of SNPs. Gene 234, 177–186.

    Article  CAS  PubMed  Google Scholar 

  4. Rommens, J. M., Iannuzzi, M. C., Kerem, B., et al. (1989) Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245, 1059–1065.

    Article  CAS  PubMed  Google Scholar 

  5. Kerem, B., Rommens, J. M., Buchanan, J. A., et al. (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245, 1073–1080.

    Article  CAS  PubMed  Google Scholar 

  6. Eichelbaum, M., Kroemer, H. K., and Mikus, G. (1992) Genetically determined differences in drug metabolism as a risk factor in drug toxicity. Toxicol. Lett. 64-65, 115–122.

    Article  CAS  PubMed  Google Scholar 

  7. Wittwer, C. T., Herrmann, M. G., Moss, A. A., and Rasmussen, R. P. (1997) Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques 22, 130–131, 134–138.

    CAS  PubMed  Google Scholar 

  8. Ririe, K. M., Rasmussen, R. P., and Wittwer, C. T. (1997) Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal. Biochem. 245, 154–160.

    Article  CAS  PubMed  Google Scholar 

  9. Winn-Deen, E. S. (1998) Direct Fluorescence Detection of Allele-Specific PCR Products Using Novel Energy-Transfer Labeled Primers. Mol. Diagn. 3, 217–221.

    Article  CAS  PubMed  Google Scholar 

  10. Uehara, H., Nardone, G., Nazarenko, I., and Hohman, R. J. (1999) Detection of telomerase activity utilizing energy transfer primers: comparison with gel-and ELISA-based detection. Biotechniques 26, 552–558.

    CAS  PubMed  Google Scholar 

  11. Livak, K. J., Flood, S. J., Marmaro, J., Giusti, W., and Deetz, K. (1995) Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl. 4, 357–362.

    CAS  PubMed  Google Scholar 

  12. Lay, M. J. and Wittwer, C. T. (1997) Real-time fluorescence genotyping of factor V Leiden during rapid-cycle PCR. Clin. Chem. 43, 2262–2267.

    CAS  PubMed  Google Scholar 

  13. Happich, D., Schwaab, R., Hanfland, P., and Hoernschemeyer, D. (1999) Allelic discrimination of factor V Leiden using a 5′ nuclease assay. Thromb. Haemost. 82, 1294–1296.

    CAS  PubMed  Google Scholar 

  14. Tyagi, S. and Kramer, F. R. (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol. 14, 303–308.

    Article  CAS  PubMed  Google Scholar 

  15. Bernard, P. S., Lay, M. J., and Wittwer, C. T. (1998) Integrated amplification and detection of the C677T point mutation in the methylenetetrahydrofolate reductase gene by fluorescence resonance energy transfer and probe melting curves. Anal. Biochem. 255, 101–107.

    Article  CAS  PubMed  Google Scholar 

  16. Isacsson, J., Cao, H., Ohlsson, L., et al. (2000) Rapid and specific detection of PCR products using light-up probes. Mol. Cell. Probes 14, 321–328, doi: 10.1006/mcpr/ 2000.0321.

    Article  CAS  PubMed  Google Scholar 

  17. Livak, K. J., Marmaro, J., and Todd, J. A. (1995) Towards fully automated genomewide polymorphism screening. Nat. Genet. 9, 341–342.

    Article  CAS  PubMed  Google Scholar 

  18. Svanvik, N., Westman, G., Wang, D., and Kubista, M. (2000) Light-up probes: thiazole orange-conjugated peptide nucleic acid for detection of target nucleic acid in homogeneous solution. Anal. Biochem. 281, 26–35.

    Article  CAS  PubMed  Google Scholar 

  19. Tyagi, S., Marras, S. A., and Kramer, F. R. (2000) Wavelength-shifting molecular beacons. Nat. Biotechnol. 18, 1191–1196.

    Article  CAS  PubMed  Google Scholar 

  20. Whitcombe, D., Theaker, J., Guy, S. P., Brown, T., and Little, S. (1999) Detection of PCR products using self-probing amplicons and fluorescence. Nat. Biotechnol. 17, 804–807.

    Article  CAS  PubMed  Google Scholar 

  21. Crockett and Wittwer. (2001) Fluorescein-Labeled Oligonucleotides for Real-Time PCR: Using the Inherent Quenching of Deoxyguanosine Nucleotides. Anal. Biochem., 290, 89–97.

    Google Scholar 

  22. Bonnet, G., Tyagi, S., Libchaber, A., and Kramer, F. R. (1999) Thermodynamic basis of the enhanced specificity of structured DNA probes. Proc. Nat. Acad. Sci. USA 96, 6171–6176.

    Article  CAS  PubMed  Google Scholar 

  23. Livak, K. J. (1999) Allelic discrimination using fluorogenic probes and the 5′ nuclease assay. Genet. Anal. 14, 143–149.

    CAS  PubMed  Google Scholar 

  24. Marras, S. A., Kramer, F. R., and Tyagi, S. (1999) Multiplex detection of single-nucleotide variations using molecular beacons. Genet. Anal. 14, 151–156.

    CAS  PubMed  Google Scholar 

  25. French, D. J., Archard, C. L., Brown, T., McDowell, D. G. (2001) HyBeacon probes: a new tool for DNA sequence detection and allele discrimination. Mol. Cell. Probes. 15, 363–374.

    Article  CAS  PubMed  Google Scholar 

  26. French D. J., Archard, C. L., Andersen, M. T., and McDowell, D. G. (2002) Ultra-rapid DNA analysis using HyBeacon probes and direct PCR amplification direct from saliva. Mol. Cell. Probes. 16, 319–326.

    Article  CAS  PubMed  Google Scholar 

  27. Dobson, N., McDowell, D. G., French, D. J., Brown, L. J., Mellor, J. M., and Brown, T. (2003) Synthesis of HyBeacons and dual-labelled probes containing 2′-fluorescent groups for use in genetic analysis. Chem. Commun. 1234–1235.

    Google Scholar 

  28. McKeen, C. M., Brown, L. J., Nicol, J. T. G., Mellor, J. M., and Brown, T. (2003) Synthesis of fluorophore and quencher monomers for use in Scorpion primers and nucleic acid structural probes. Org. Biomol. Chem. 1, 2267–2275.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

French, D.J., McDowell, D.G., Debenham, P., Gale, N., Brown, T. (2008). HyBeacon® Probes for Rapid DNA Sequence Detection and Allele Discrimination. In: Marx, A., Seitz, O. (eds) Molecular Beacons: Signalling Nucleic Acid Probes, Methods, and Protocols. Methods in Molecular Biology, vol 429. Humana Press. https://doi.org/10.1007/978-1-60327-040-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-040-3_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-700-6

  • Online ISBN: 978-1-60327-040-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics