Skip to main content

Neuroproteomic Methods in Spinal Cord Injury

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 566))

Summary

Spinal cord injury (SCI) is a major public health problem with no known effective treatment. Traumatic injury to the spinal cord initiates a host of pathophysiological events that are secondary to the initial insult leading to neuronal dysfunction and death; yet, the molecular mechanisms underlying its dysfunction are poorly understood. Furthermore, while use of imaging methods (e.g., computed tomography scans and magnetic resonance imaging) may help define injury severity and location, they do not elucidate biological mechanisms of SCI progression. The lack of comparable biomarkers for monitoring SCI makes accurate diagnosis and evaluation of SCI progression difficult. Spinal cord contusion is an extensively used SCI model in rats that best represents the etiology of SCI in humans. In this chapter, we describe a two-dimensional (2D) gel electrophoresis-based proteomic approach to investigate the injury-related differences in the proteome and phosphoproteome of spinal cord lesion epicenter at 24 h after spinal cord contusion in rats. The purpose of this study is to elucidate the mechanisms of acute spinal cord dysfunction, as well as discover novel biomarker candidates to evaluate the biological mechanisms of SCI progression and the injury severity.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Grossman, S. D., Rosenberg, L. J., and Wrathall, J. R. (2001) Temporal-spatial pattern of acute neuronal and glial loss after spinal cord contusion. Exp. Neurol. 168, 273–282.

    Article  PubMed  Google Scholar 

  2. Springer, J. E. (2002) Apoptotic cell death following traumatic injury to the central nervous system. J. Biochem. Mol. Biol. 35, 94–105.

    Article  PubMed  CAS  Google Scholar 

  3. Bareyre, F. M., and Schwab, M. E. (2003) Inflammation, degeneration and regeneration in the injured spinal cord: insights from DNA microarrays. Trends Neurosci. 26, 555–563.

    Article  PubMed  CAS  Google Scholar 

  4. Ahn, Y. H., Lee, G., and Kang, S. K. (2006) Molecular insights of the injured lesions of rat spinal cords: Inflammation, apoptosis, and cell survival. Biochem. Biophys. Res. Commun. 348, 560–570.

    Article  PubMed  CAS  Google Scholar 

  5. Ling, X., and Liu, D. (2007) Temporal and spatial profiles of cell loss after spinal cord injury: Reduction by a metalloporphyrin. J. Neurosci. Res. 85, 2175–2185.

    Article  PubMed  CAS  Google Scholar 

  6. Pearse, D. D., and Bunge, M. B. (2006) Designing cell- and gene-based regeneration strategies to repair the injured spinal cord. J. Neurotrauma 23, 438–452.

    Article  PubMed  CAS  Google Scholar 

  7. Onifer, S. M., Rabchevsky, A. G., and Scheff, S. W. (2007) Rat models of traumatic spinal cord injury to assess motor recovery. ILAR J. 48, 385–395.

    Article  PubMed  CAS  Google Scholar 

  8. Scheff, S. W., Rabchevsky, A. G., Fugaccia, I., Main, J. A., and Lumpp, J. E., Jr. (2003) Experimental modeling of spinal cord injury: Characterization of a force-defined injury device. J. Neurotrauma 20, 179–193.

    Article  PubMed  Google Scholar 

  9. Cao, Q., Zhang, Y. P., Iannotti, C., DeVries, W. H., Xu, X. M., Shields, C. B., and Whittemore, S. R. (2005) Functional and electrophysiological changes after graded traumatic spinal cord injury in adult rat. Exp. Neurol. 191, S3–S16.

    Article  PubMed  Google Scholar 

  10. Ravikumar, R., McEwen, M. L., and Springer, J. E. (2007) Post-treatment with the cyclosporin derivative, NIM811, reduced indices of cell death and increased the volume of spared tissue in the acute period following spinal cord contusion. J. Neurotrauma 24, 1618–1630.

    Article  PubMed  Google Scholar 

  11. McEwen, M. L., Sullivan, P. G., and Springer, J. E. (2007) Pretreatment with the cyclosporin derivative, NIM811, improves the function of synaptic mitochondria following spinal cord contusion in rats. J. Neurotrauma 24, 613–624.

    Article  PubMed  Google Scholar 

  12. Denslow, N., Miche, M. E., Temple, M. D., Hsu, C. Y., Saatman, K., and Hayes, R. L. (2003) Application of proteomics technology to the field of neurotrauma. J. Neurotrauma 20, 401–407.

    Article  PubMed  Google Scholar 

  13. Wang, K. K., Ottens, A., Haskins, W., Liu, M. C., Kobeissy, F., Denslow, N., Chen, S., and Hayes, R. L. (2004) Proteomics studies of traumatic brain injury. Int. Rev. Neurobiol. 61, 215–240.

    Article  PubMed  CAS  Google Scholar 

  14. Ottens, A. K., Kobeissy, F. H., Fuller, B. F., Liu, M. C., Oli, M. W., Hayes, R. L., and Wang, K. K. (2007) Novel neuroproteomic approaches to studying traumatic brain injury. Prog. Brain Res. 161, 401–418.

    Article  PubMed  CAS  Google Scholar 

  15. Cohen, P. (1982) The role of protein phosphorylation in neural and hormonal control of cellular activity. Nature 296, 613–620.

    Article  PubMed  CAS  Google Scholar 

  16. Cohen, P. (1992) Signal integration at the level of protein kinases, protein phosphatases and their substrates. Trends Biochem. Sci. 17, 408–413.

    Article  PubMed  CAS  Google Scholar 

  17. Gygi, S. P., Corthals, G. L., Zhang, Y., Rochon, Y., and Aebersold, R. (2000) Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc. Natl. Acad. Sci. USA 97, 9390–9395.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Melanie L. McEwen and Dr. Rangaswamy Rao Ravikumar for technical assistance. This work was supported by PHS grant NS46380 and an endowment from Cardinal Hill Rehabilitation Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anshu Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Chen, A., Springer, J.E. (2009). Neuroproteomic Methods in Spinal Cord Injury. In: Ottens, A., Wang, K. (eds) Neuroproteomics. Methods in Molecular Biology, vol 566. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-562-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-562-6_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-84-8

  • Online ISBN: 978-1-59745-562-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics