Skip to main content

Dynamic Imaging of Brain Function

  • Protocol
Dynamic Brain Imaging

Part of the book series: METHODS IN MOLECULAR BIOLOGY™ ((MIMB,volume 489))

Abstract

In recent years, there have been unprecedented methodological advances in the dynamic imaging of brain activities. Electrophysiological, optical, and magnetic resonance methods now allow mapping of functional activation (or deactivation) by measurement of neural activity (e.g., membrane potential, ion flux, neurotransmitter flux), energy metabolism (e.g., glucose consumption, oxygen consumption, creatine kinase flux), and functional hyperemia (e.g., blood oxygenation, blood flow, blood volume). Properties of the glutamatergic synapse are used to model activities at the nerve terminal and their associated changes in energy demand and blood flow. This approach reveals that each method measures different tissue- and/or cell-specific components with characteristic spatiotemporal resolution. While advantages and disadvantages of different methods are apparent and often used to supersede one another in terms of specificity and/or sensitivity, no particular technique is the optimal dynamic brain imaging method because each method is unique in some respect. Since the demand for energy substrates is a fundamental requirement for function, energy-based methods may allow quantitative dynamic imaging in vivo. However, there are exclusive neurobiological insights gained by combining some of these different dynamic imaging techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shepherd GM (2004) The Synaptic Organization of the Brain. (Oxford University, New York, NY, USA)

    Book  Google Scholar 

  2. Kandel ER, Schwartz JH, Jessell TM (2000) Principles of Neural Science. (McGraw-Hill, New York, NY, USA)

    Google Scholar 

  3. Huettel SA, Song AW, McCarthy G (2004) Functional Magnetic Resonance Imaging (Sinauer, Sunderland, MA, USA)

    Google Scholar 

  4. Jakovcevic D, Harder DR (2007) Role of astrocytes in matching blood flow to neuronal activity. Curr Top Dev Biol. 79:75–97

    Article  CAS  PubMed  Google Scholar 

  5. Iadecola C, Nedergaard M (2007) Glial regulation of the cerebral microvasculature. Nat Neurosci. 10:1369–1376

    Article  CAS  PubMed  Google Scholar 

  6. Shulman RG, Rothman DL (1998) Interpreting functional imaging studies in terms of neurotransmitter cycling. Proc Natl Acad Sci USA. 95:11993–11998

    Article  CAS  PubMed  Google Scholar 

  7. Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab. 21:1133–1145

    Article  CAS  PubMed  Google Scholar 

  8. Attwell D, Iadecola C (2002) The neural basis of functional brain imaging signals. Trends Neurosci. 25:621–625

    Article  CAS  PubMed  Google Scholar 

  9. Drake CT, Iadecola C (2007) The role of neuronal signaling in controlling cerebral blood flow. Brain Lang. 102:141–152

    Article  PubMed  Google Scholar 

  10. Nicholls DG (1993) The glutamatergic nerve terminal. Eur J Biochem. 212:613–631

    Article  CAS  PubMed  Google Scholar 

  11. Hyder F, Patel AB, Gjedde A, Rothman DL, Behar KL, Shulman RG (2006) Neuronal-glial glucose oxidation and glutamatergic-GABAergic function. J Cereb Blood Flow Metab. 26:865–877

    Article  CAS  PubMed  Google Scholar 

  12. Bonvento G, Sibson N, Pellerin L (2002) Does glutamate image your thoughts? Trends Neurosci. 25:359–364

    Article  CAS  PubMed  Google Scholar 

  13. Meldrum BS (2000) Glutamate as a Neurotransmitter in the Brain: Review of Physiology and Pathology. J Nutr. 130(4S Suppl):1007S-1015S

    CAS  PubMed  Google Scholar 

  14. Hodgkin AL, Huxley AF (1952) Propagation of electrical sickels along giant nerve fibres. Proc R Soc Lond B Biol Sci. 140:177–183

    Article  CAS  PubMed  Google Scholar 

  15. Llinas R, Sugimori M, Silver RB (1992) Microdomains of high calcium concentration in a presynaptic terminal. Science. 256:677–679

    Article  CAS  PubMed  Google Scholar 

  16. Dzubay JA, Jahr CE (1996) Kinetics of NMDA channel opening. J Neurosci. 16:4129–4134

    CAS  PubMed  Google Scholar 

  17. Rothman DL, Sibson NR, Hyder F, Shen J, Behar KL, Shulman RG (1999) In vivo nuclear magnetic resonance spectroscopy studies of the relationship between the glutamate-glutamine neurotransmitter cycle and functional neuroenergetics. Philos Trans R Soc Lond B Biol Sci. 354:1165–1177

    Article  CAS  PubMed  Google Scholar 

  18. Marder E (2006) Neurobiology: Extending influence. Nature. 441:702–703

    Article  CAS  PubMed  Google Scholar 

  19. Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science. 304:1926–1929

    Article  CAS  PubMed  Google Scholar 

  20. Magistretti PJ, Pellerin L, Rothman DL, Shulman RG (1999) Energy on demand. Science. 283:496–497

    Article  CAS  PubMed  Google Scholar 

  21. Sokoloff L (1991) “Relationship between functional activity and energy metabolism in the nervous system: Whether, where and why?” in Brain Work and Mental Activity (Eds, Lassen NA, Ingvar DH, Raichle ME, Friberg L). pp. 52–64 (Munksgaard, Copenhagen, Denmark)

    Google Scholar 

  22. Williams LR, Leggett RW (1989) Reference values for resting blood flow to organs of man. Clin Phys Physiol Meas. 10:187–217

    Article  CAS  PubMed  Google Scholar 

  23. Silver IA, Erecinska M (1994) Extracellular glucose concentration in mammalian brain: Continuous monitoring of changes during increased neuronal activity and upon limitation in oxygen supply in normo-, hypo-, and hyperglycemic animals. J Neurosci. 14:5068–5076

    CAS  PubMed  Google Scholar 

  24. Herman P, Trubel HK, Hyder F (2006) A multiparametric assessment of oxygen efflux from the brain. J Cereb Blood Flow Metab. 26:79–91

    Article  PubMed  Google Scholar 

  25. Choi IY, Gruetter R (2003) In vivo 13C NMR assessment of brain glycogen concentration and turnover in the awake rat. Neurochem Int. 43:317–322

    Article  CAS  PubMed  Google Scholar 

  26. Lin Y, Zhang YP, Xiao ZW, Li H, Shen ZW, Chen XK, Huang K, Wu RH (2006) Quantification of brain creatine concentration using PRESS sequence and LCModel: Comparison with HPLC method. Conf Proc IEEE Eng Med Biol Soc. 1:1928–1931

    Article  CAS  PubMed  Google Scholar 

  27. Siesjo BK (1978) Brain Energy Metabolism. (Wiley, New York, NY, USA)

    Google Scholar 

  28. Trubel HK, Sacolick LI, Hyder F (2006) Regional temperature changes in the brain during somatosensory stimulation. J Cereb Blood Flow Metab. 26:68–78

    Article  PubMed  Google Scholar 

  29. Roland PE, Eriksson L, Stone-Elander S, Widen L (1987) Does mental activity change the oxidative metabolism of the brain? J Neurosci. 7:2373–2389

    CAS  PubMed  Google Scholar 

  30. Ames A 3rd (2000) CNS energy metabolism as related to function. Brain Res Brain Res Rev. 34:42–68

    Article  CAS  PubMed  Google Scholar 

  31. Pardridge WM (1983) Brain metabolism: A perspective from the blood-brain barrier. Physiol Rev 63:1481–1535

    CAS  PubMed  Google Scholar 

  32. Lund-Andersen H (1979) Transport of glucose from blood to brain. Physiol Rev. 59:305–352

    CAS  PubMed  Google Scholar 

  33. Simpson IA, Carruthers A, Vannucci SJ (2007) Supply and demand in cerebral energy metabolism: The role of nutrient transporters. J Cereb Blood Flow Metab. 27:1766–1791

    Article  CAS  PubMed  Google Scholar 

  34. Magistretti PJ, Allaman I (2007) Glycogen: A Trojan horse for neurons. Nat Neurosci. 10:1341–1342

    Article  CAS  PubMed  Google Scholar 

  35. Shulman RG, Hyder F, Rothman DL (2001) Cerebral energetics and the glycogen shunt: Neurochemical basis of functional imaging. Proc Natl Acad Sci USA. 98:6417–6422

    Article  CAS  PubMed  Google Scholar 

  36. Shulman RG, Hyder F, Rothman DL (2001) Lactate efflux and the neuroenergetic basis of brain function. NMR Biomed. 14:389–396

    Article  CAS  PubMed  Google Scholar 

  37. Villringer A, Dirnagl U (1995) Coupling of brain activity and cerebral blood flow: Basis of functional neuroimaging. Cerebrovasc. Brain Metab Rev. 7:240–276

    CAS  PubMed  Google Scholar 

  38. Buxton RB, Frank LR (1997) A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J Cereb Blood Flow Metab. 17:64–72

    Article  CAS  PubMed  Google Scholar 

  39. Hyder F, Shulman RG, Rothman DL (1998) A model for the regulation of cerebral oxygen delivery. J Appl Physiol. 85:554–564

    CAS  PubMed  Google Scholar 

  40. Hyder F, Kennan RP, Kida I, Mason GF, Behar KL, Rothman DL (2000) Dependence of oxygen delivery on blood flow in rat brain: A 7 tesla nuclear magnetic resonance study. J Cereb Blood Flow Metab. 20:485–498

    Article  CAS  PubMed  Google Scholar 

  41. Wolf T, Lindauer U, Villringer A, Dirnagl U (1997) Excessive oxygen or glucose supply does not alter the blood flow response to somatosensory stimulation or spreading depression in rats. Brain Res. 761:290–299

    Article  CAS  PubMed  Google Scholar 

  42. Shulman RG, Rothman DL, Behar KL, Hyder F (2004) Energetic basis of brain activity: Implications for neuroimaging. Trends Neurosci. 27:489–495

    Article  CAS  PubMed  Google Scholar 

  43. Lou HC, Edvinsson L, MacKenzie ET (1987) The concept of coupling blood flow to brain function: Revision required? Ann Neurol. 22:289–297

    Article  CAS  PubMed  Google Scholar 

  44. Roy CS, Sherrington CS (1890) On the regulation of the blood-supply of the brain. J Physiol. 11:85–108

    CAS  PubMed  Google Scholar 

  45. Cauli B, Tong XK, Rancillac A, Serluca N, Lambolez B, Rossier J, Hamel E (2004) Cortical GABA interneurons in neurovascular coupling: Relays for subcortical vasoactive pathways. J Neurosci. 24:8940–8949

    Article  CAS  PubMed  Google Scholar 

  46. Rancillac A, Rossier J, Guille M, Tong XK, Geoffroy H, Amatore C, Arbault S, Hamel E, Cauli B (2006) Glutamatergic control of microvascular tone by distinct GABA neurons in the cerebellum. J Neurosci. 26: 6997–7006

    Article  CAS  PubMed  Google Scholar 

  47. Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: A mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA. 91:10625–10629

    Article  CAS  PubMed  Google Scholar 

  48. Cohen Z, Bouchelet I, Olivier A, Villemure JG, Ball R, Stanimirovic DB, Hamel E (1999) Multiple microvascular and astroglial 5-hydroxytryptamine receptor subtypes in human brain: Molecular and pharmacologic characterization. J Cereb Blood Flow Metab. 19:908–917

    Article  CAS  PubMed  Google Scholar 

  49. Elhusseiny A, Cohen Z, Olivier A, Stanimirovic DB, Hamel E (1999) Functional acetylcholine muscarinic receptor subtypes in human brain microcirculation: Identification and cellular localization. J Cereb Blood Flow Metab. 19:794–802

    Article  CAS  PubMed  Google Scholar 

  50. Gillard SE, Tzaferis J, Tsui HC, Kingston AE (2003) Expression of metabotropic glutamate receptors in rat meningeal and brain microvasculature and choroid plexus. J Comp Neurol. 461:317–332

    Article  CAS  PubMed  Google Scholar 

  51. Parfenova H, Fedinec A, Leffler CW (2003) Ionotropic glutamate receptors in cerebral microvascular endothelium are functionally linked to heme oxygenase. J Cereb Blood Flow Metab. 23:190–197

    Article  CAS  PubMed  Google Scholar 

  52. Garthwaite J, Charles SL, Chess-Williams R (1988) Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature. 336:385–388

    Article  CAS  PubMed  Google Scholar 

  53. Ledo A, Barbosa RM, Gerhardt GA, Cadenas E, Laranjinha J (2005) Concentration dynamics of nitric oxide in rat hippocampal subregions evoked by stimulation of the NMDA glutamate receptor. Proc Natl Acad Sci USA. 102:17483–17488

    Article  CAS  PubMed  Google Scholar 

  54. Takano T, Tian GF, Peng W, Lou N, Libionka W, Han X, Nedergaard M (2006) Astrocyte-mediated control of cerebral blood flow. Nat Neurosci. 9:260–267

    Article  CAS  PubMed  Google Scholar 

  55. Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, Carmignoto G (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci. 6:43–50

    Article  CAS  PubMed  Google Scholar 

  56. Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci. 5:347–360

    Article  CAS  PubMed  Google Scholar 

  57. Peppiatt C, Attwell D (2004) Neurobiology: Feeding the brain. Nature. 431:137–138

    Article  CAS  PubMed  Google Scholar 

  58. Mulligan SJ, MacVicar BA (2004) Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature. 431:195–199

    Article  CAS  PubMed  Google Scholar 

  59. Logothetis NK (2003) The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci. 23:3963–3971

    CAS  PubMed  Google Scholar 

  60. Raichle ME (2003) Functional brain imaging and human brain function. J Neurosci. 23:3959–3962

    CAS  PubMed  Google Scholar 

  61. Churchland PS, Sejnowski TJ (1988) Perspectives on cognitive neuroscience. Science. 242:741–745

    Article  CAS  PubMed  Google Scholar 

  62. Cohen MS, Bookheimer SY (1994) Localization of brain function using magnetic resonance imaging. Trends Neurosci. 17:268–277

    Article  CAS  PubMed  Google Scholar 

  63. Grinvald A, Hildesheim R (2004) VSDI: A new era in functional imaging of cortical dynamics. Nat Rev Neurosci. 5:874–885

    Article  CAS  PubMed  Google Scholar 

  64. Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 28:897–916

    Article  CAS  PubMed  Google Scholar 

  65. Raichle ME (1988) “Circulatory and metabolic correlates of brain function in normal humans” in Handbook of Physiology – The Nervous System V, pp. 633–674 (Springer-Verlag, New York, NY, USA)

    Google Scholar 

  66. Chatziioannou AF (2002) Molecular imaging of small animals with dedicated PET tomographs. Eur J Nucl Med Mol Imaging. 29:98–114

    Article  PubMed  Google Scholar 

  67. Freeman WJ (2004) Origin, structure, and role of background EEG activity. Part 1. Analytic amplitude. Clin Neurophysiol. 115:2077–2088

    Article  PubMed  Google Scholar 

  68. Ioannides AA (2006) Magnetoencephalography as a research tool in neuroscience: State of the art. Neuroscientist. 12:524–544

    Article  PubMed  Google Scholar 

  69. Cohen LB (1973) Changes in neuron structure during action potential propagation and synaptic transmission. Physiol Rev. 53: 373–418

    CAS  PubMed  Google Scholar 

  70. Roe AW (2007) Long-term optical imaging of intrinsic signals in anesthetized and awake monkeys. Appl Opt. 46:1872–1880

    Article  PubMed  Google Scholar 

  71. Baker BJ, Kosmidis EK, Vucinic D, Falk CX, Cohen LB, Djurisic M, Zecevic D (2005) Imaging brain activity with voltage- and calcium-sensitive dyes. Cell Mol Neurobiol. 25:245–282

    Article  CAS  PubMed  Google Scholar 

  72. Jobsis FF (1977) Noninvasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science. 198:1264–1267

    Article  CAS  PubMed  Google Scholar 

  73. Hoshi Y (2003) Functional near-infrared optical imaging: Utility and limitations in human brain mapping. Psychophysiology. 40:511–520

    Article  PubMed  Google Scholar 

  74. Boas DA, Dale AM, Franceschini MA (2004) Diffuse optical imaging of brain activation: Approaches to optimizing image sensitivity, resolution, and accuracy. Neuroimage. 23 Suppl 1:S275–S288

    Article  PubMed  Google Scholar 

  75. Stern MD (1975) In vivo evaluation of microcirculation by coherent light scattering. Nature. 254:56–58

    Article  CAS  PubMed  Google Scholar 

  76. Kida I, Maciejewski PK, Hyder F (2004) Dynamic imaging of perfusion and oxygenation by functional magnetic resonance imaging. J Cereb Blood Flow Metab. 24:1369–1381

    Article  PubMed  Google Scholar 

  77. Sudikoff S, Banasiak K (1998) Techniques for measuring cerebral blood flow in children. Curr Opin Pediatr. 10:291–298

    Article  CAS  PubMed  Google Scholar 

  78. Abragam A (1961) Principles of Nuclear Magnetism. (Oxford University, Oxford, UK)

    Google Scholar 

  79. Shulman RG, Rothman DL (2004) Brain Energetics & Neuronal Activity: Applications to fMRI and Medicine. (Wiley, New York, NY, USA)

    Google Scholar 

  80. Ackerman JJ, Grove TH, Wong GG, Gadian DG, Radda GK (1980) Mapping of metabolites in whole animals by 31P NMR using surface coils. Nature. 283:167–170

    Article  CAS  PubMed  Google Scholar 

  81. Du F, Zhu XH, Qiao H, Zhang X, Chen W (2007) Efficient in vivo 31P magnetization transfer approach for noninvasively determining multiple kinetic parameters and metabolic fluxes of ATP metabolism in the human brain. Magn Reson Med. 57: 103–114

    Article  CAS  PubMed  Google Scholar 

  82. Fiat D, Dolinsek J, Hankiewicz J, Dujovny M, Ausman J (1993) Determination of regional cerebral oxygen consumption in the human: 17O natural abundance cerebral magnetic resonance imaging and spectroscopy in a whole body system. Neurol Res. 15:237–248

    CAS  PubMed  Google Scholar 

  83. Zhu XH, Zhang N, Zhang Y, Zhang X, Ugurbil K, Chen W (2005) In vivo 17O NMR approaches for brain study at high field. NMR Biomed. 18:83–103

    Article  CAS  PubMed  Google Scholar 

  84. Nakada T, Kwee IL, Card PJ, Matwiyoff NA, Griffey BV, Griffey RH (1988) Fluorine-19 NMR imaging of glucose metabolism. Magn Reson Med. 6:307–313

    Article  CAS  PubMed  Google Scholar 

  85. Coman D, Sanganahalli BG, Cheng DW, McCarthy T, Rothman DL, Hyder F (2007) In vivo 19F CSI of 2-fluoro-2-deoxy-D-glucose and 2-fluoro-2-deoxy-D-glucose-6-phosphate in rat brain. Proc Inter Soc Magn Reson Med. 1:577

    Google Scholar 

  86. Morris P, Bachelard H (2003) Reflections on the application of 13C-MRS to research on brain metabolism. NMR Biomed. 16:303–312

    Article  CAS  PubMed  Google Scholar 

  87. Golman K, Ardenkjaer-Larsen JH, Petersson JS, Mansson S, Leunbach I (2003) Molecular imaging with endogenous substances. Proc Natl Acad Sci USA. 100:10435–10439

    Article  CAS  PubMed  Google Scholar 

  88. Klomp DW, Renema WK, van der Graaf M, de Galan BE, Kentgens AP, Heerschap A (2006) Sensitivity-enhanced 13C MR spectroscopy of the human brain at 3 Tesla. Magn Reson Med. 55:271–278

    Article  CAS  PubMed  Google Scholar 

  89. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA. 87:9868–9872

    Article  CAS  PubMed  Google Scholar 

  90. Kennan RP, Scanley BE, Innis RB, Gore JC (1998) Physiological basis for BOLD MR signal changes due to neuronal stimulation: separation of blood volume and magnetic susceptibility effects. Magn Reson Med. 40:840–846

    Article  CAS  PubMed  Google Scholar 

  91. Williams DS, Detre JA, Leigh JS, Koretsky AP (1992) Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci USA. 89:212–216

    Article  CAS  PubMed  Google Scholar 

  92. Ugurbil K, Adriany G, Andersen P, Chen W, Garwood M, Gruetter R, Henry PG, Kim SG, Lieu H, Tkac I, Vaughan T, Van De Moortele PF, Yacoub E, Zhu XH (2003) Ultrahigh field magnetic resonance imaging and spectroscopy. Magn Reson Imaging. 21:1263–1281

    Article  PubMed  Google Scholar 

  93. Hoge RD, Pike GB (2001) Oxidative metabolism and the detection of neuronal activation via imaging. J Chem Neuroanat. 22:43–52

    Article  CAS  PubMed  Google Scholar 

  94. Hyder F, Kida I, Behar KL, Kennan RP, Maciejewski PK, Rothman DL (2001) Quantitative functional imaging of the brain: Towards mapping neuronal activity by BOLD fMRI. NMR Biomed. 14:413–431

    Article  CAS  PubMed  Google Scholar 

  95. Smith AJ, Blumenfeld H, Behar KL, Rothman DL, Shulman RG, Hyder F (2002) Cerebral energetics and spiking frequency: The neurophysiological basis of fMRI. Proc Natl Acad Sci USA. 99:10765–10770

    Article  CAS  PubMed  Google Scholar 

  96. Kida I, Rothman DL, Hyder F (2007) Dynamics of changes in blood flow, volume, and oxygenation: Implications for dynamic functional magnetic resonance imaging calibration. J Cereb Blood Flow Metab. 27:690–696

    PubMed  Google Scholar 

  97. Sanganahalli BG, Herman P, Hyder F (2007) Transient energetics from fMRI: Single event to block design paradigms. J Cereb Blood Flow Metab. BP47–6 W

    Google Scholar 

  98. Bandettini PA, Petridou N, Bodurka J (2005) Direct detection of neuronal activity with MRI: Fantasy, possibility, or reality? Appl Magn Reson. 29:65–88

    Article  Google Scholar 

  99. Le Bihan D (2007) The ‘Wet Mind’: Water and functional neuroimaging. Phys Med Biol. 52:R57–R90

    Article  PubMed  Google Scholar 

  100. Jasanoff A (2007) Bloodless FMRI. Trends Neurosci. 30:603–610

    Article  CAS  PubMed  Google Scholar 

  101. Hyder F (2004) Neuroimaging with calibrated fMRI. Stroke. 35(11 Suppl 1):2635–2641

    Article  PubMed  Google Scholar 

  102. Shmuel A, Augath M, Oeltermann A, Logothetis NK (2005) Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci. 9:569–577

    Article  CAS  Google Scholar 

  103. Maandag NJ, Coman D, Sanganahalli BG, Herman P, Smith AJ, Blumenfeld H, Shulman RG, Hyder F (2007) Energetics of neuronal signaling and fMRI activity. Proc Natl Acad Sci USA. 104:20546–20551

    Article  CAS  PubMed  Google Scholar 

  104. Sharon D, Hamalainen MS, Tootell RB, Halgren E, Belliveau JW (2007) The advantage of combining MEG and EEG: Comparison to fMRI in focally stimulated visual cortex. Neuroimage. 36:1225–1235

    Article  PubMed  Google Scholar 

  105. Stefanovic B, Schwindt W, Hoehn M, Silva AC (2007) Functional uncoupling of hemodynamic from neuronal response by inhibition of neuronal nitric oxide synthase. J Cereb Blood Flow Metab. 27:741–754

    CAS  PubMed  Google Scholar 

  106. Devor A, Dunn AK, Andermann ML, Ulbert I, Boas DA, Dale AM (2003) Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex. Neuron. 39:353–359

    Article  CAS  PubMed  Google Scholar 

  107. Sheth SA, Nemoto M, Guiou M, Walker M, Pouratian N, Toga AW (2004) Linear and nonlinear relationships between neuronal activity, oxygen metabolism, and hemodynamic responses. Neuron. 42:347–355

    Article  CAS  PubMed  Google Scholar 

  108. Jones M, Hewson-Stoate N, Martindale J, Redgrave P, Mayhew J (2004) Nonlinear coupling of neural activity and CBF in rodent barrel cortex. Neuroimage. 22:956–965

    Article  PubMed  Google Scholar 

  109. Chen-Bee CH, Agoncillo T, Xiong Y, Frostig RD (2007) The triphasic intrinsic signal: Implications for functional imaging. J Neurosci. 27:4572–4586

    Article  CAS  PubMed  Google Scholar 

  110. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 8:700–711

    Article  CAS  PubMed  Google Scholar 

  111. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 34:537–541

    Article  CAS  PubMed  Google Scholar 

  112. Arieli A, Sterkin A, Grinvald A, Aertsen A (1996) Dynamics of ongoing activity: Explanation of the large variability in evoked cortical responses. Science. 273:1868–1871

    Article  CAS  PubMed  Google Scholar 

  113. Leopold DA, Murayama Y, Logothetis NK (2003) Very slow activity fluctuations in monkey visual cortex: Implications for functional brain imaging. Cereb Cortex. 13: 422–433

    Article  PubMed  Google Scholar 

  114. Mitra PP, Pesaran B (1999) Analysis of dynamic brain imaging data. Biophys J. 76:691–708

    Article  CAS  PubMed  Google Scholar 

  115. Eke A, Herman P, Kocsis L, Kozak LR (2002) Fractal characterization of complexity in temporal physiological signals. Physiol Meas. 23:R1–R38

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by NIH grants from NIMH (R01 MH-067528), NIDCD (R01 DC-003710), and NINDS (P30 NS-52519).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hyder, F. (2009). Dynamic Imaging of Brain Function. In: Hyder, F. (eds) Dynamic Brain Imaging. METHODS IN MOLECULAR BIOLOGY™, vol 489. Humana Press. https://doi.org/10.1007/978-1-59745-543-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-543-5_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-74-9

  • Online ISBN: 978-1-59745-543-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics