Skip to main content

Degenerate Primer Design

Theoretical Analysis and the HYDEN Program

  • Protocol
PCR Primer Design

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 402))

Summary

A polymerase chain reaction (PCR) primer sequence is called degenerate if some of its positions have several possible bases. The degeneracy of the primer is the number of unique sequence combinations it contains. We study the problem of designing a pair of primers with prescribed degeneracy that match a maximum number of given input sequences. Such problems occur, for example, when studying a family of genes that is known only in part or is known in a related species. We discuss the complexity of several versions of the problem and give approximation algorithms for one simplified variant. On the basis of these algorithms, we developed a program called HYDEN for designing highly degenerate primers for a set of genomic sequences. We describe HYDEN, and report on its success in several applications for identifying olfactory receptor genes in mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    (See ref. 9 for the definition of the Oh notation)

References

  1. Kwok, S., Chang, S., Sninsky, J., and Wang, A. (1994) A guide to the design and use of mismatched and degenerate primers. PCR Methods and Applications. 3, S39–47.

    PubMed  CAS  Google Scholar 

  2. Linhart, C. and Shamir, R. (2005) The degenerate primer design problem: theory and applications. Journal of Computational Biology 12, 431–456.

    Article  PubMed  CAS  Google Scholar 

  3. Fuchs, T., Malecova, B., Linhart, C., Sharan, R., Khen, M., Herwig, R., Shmulevich, D., Elkon, R., Steinfath, M., O’Brien, J., Radelof, U., Lehrach, H., Lancet, D., and Shamir, R. (2002) DEFOG: a practical scheme for deciphering families of genes. Genomics, 80, 295–302.

    Article  PubMed  CAS  Google Scholar 

  4. Pearson, W., Robins, G., Wredgs, D., and Zhang, T. (1996) On the primer selection problem in polymerase chain reaction experiments. Discrete Applied Mathematics 71, 231–246.

    Article  Google Scholar 

  5. Doi, K. and Imai, H. (1997) Greedy algorithms for finding a small set of primers satisfying cover length resolution conditions in PCR experiments. In Proceedings of 8th Workshop on Genome Informatics, pp. 43–52. Tokyo, Japan.

    Google Scholar 

  6. Bailey, T. and Elkan, C. (1995) Unsupervised learning of multiple motifs in biopolymers using expectation maximization. Machine Learning 21, 51–80.

    Google Scholar 

  7. Lawrence, C., Altschul, S., Boguski, M., Liu, J., Neuwald, A., and Wootton, J. (1993) Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. Science 262, 208–214.

    Article  PubMed  CAS  Google Scholar 

  8. Linhart, C. (2002) The degenerate primer design problem Masters thesis, School of Computer Science, Tel Aviv University, November 2002. Available at http://www.cs.tau.ac.il/~chaiml/biology/dpd_thesis.ps.gz.

  9. Cormen, T. H., Leiserson, C. E., and Rivest, R. L. (1990) Introduction to Algorithms. MIT Press, Cambridge, Mass.

    Google Scholar 

  10. Souvenir, R., Buhler, J., Stormo, G., and Zhang, W. (2003) Selecting degenerate multiplex PCR primers. In Proceedings of 3rd Workshop on Algorithms in Bioinformatics (WABI 2003), pp. 512–526.

    Google Scholar 

  11. Blum, M., Floyd, R., Pratt, V., Rivest, R., and Tarjan, R. (1973) Time bounds for selection. Journal of Computer and System Sciences 7, 448–461.

    Article  Google Scholar 

  12. Keich, U. and Pevzner, P. (2002) Finding motifs in the twilight zone. In Proceedings of 6th Annual International Conference on Research in Computational Molecular Biology (RECOMB 2002), pp. 195–204.

    Google Scholar 

  13. Linhart, C. and Shamir, R. (2003). HYDEN – A software for designing degenerate primers. Available at http://www.cs.tau.ac.il/~rshamir/hyden.

  14. Radelof, U., Hennig, S., Seranski, P., Steinfath, M., Ramser, J., Reinhardt, R., Poustka, A., Francis, F., and Lehrach, H. (1998) Preselection of shotgun clones by oligonucleotide fingerprinting: an efficient and high throughput strategy to reduce redundancy in large-scale sequencing projects. Nucleic Acids Research 26, 5358–5364.

    Article  PubMed  CAS  Google Scholar 

  15. Sharan, R., Maron-Katz, A., and Shamir, R. (2003) CLICK and EXPANDER: a system for clustering and visualizing gene expression data. Bioinformatics 19, 1787–1799.

    Article  PubMed  CAS  Google Scholar 

  16. Glusman, G., Yanai, I., Rubin, I., and Lancet, D. (2001) The complete human olfactory subgenome. Genome Research 11, 685–702.

    Article  PubMed  CAS  Google Scholar 

  17. Zozulya, S., Echeverri, F., and Nguyen, T. (2001) The human olfactory receptor repertoire. Genome Biology 2, RESEARCH0018.

    Google Scholar 

  18. Buck, L. and Axel, R. (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175–187.

    Article  PubMed  CAS  Google Scholar 

  19. Pilpel, Y. and Lancet, D. (1999) The variable and conserved interfaces of modeled olfactory receptor proteins. Protein Science 8, 969–977.

    Article  PubMed  CAS  Google Scholar 

  20. Fuchs, T., Glusman, G., Horn-Saban, S., Lancet, D., and Pilpel, Y. (2000) The human olfactory subgenome: From sequence to structure and evolution. Human Genetics 108, 1–13.

    Article  Google Scholar 

  21. Olender, T., Fuchs, T., Linhart, C., Shamir, R., Adams, M., Kalush, F., Khen, M., and Lancet, D. (2004) The canine olfactory subgenome. Genomics 83, 361–372.

    Article  PubMed  CAS  Google Scholar 

  22. Young, J., Friedman, C., Williams, E., Ross, J., Tonnes-Priddy, L., and Trask, B. (2002) Different evolutionary processes shaped the mouse and human olfactory receptor gene families. Human Molecular Genetics 11, 535–546.

    Article  PubMed  CAS  Google Scholar 

  23. Zhang, X. and Firestein, S. (2002) The olfactory receptor gene superfamily of the mouse. Nature Neuroscience 5, 124–133.

    PubMed  CAS  Google Scholar 

  24. Gilad, Y., Wiebe, V., Przeworski, M., Lancet, D., and Pääbo, S. (2004) Loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates. PLoS Biology 2, E5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press

About this protocol

Cite this protocol

Linhart, C., Shamir, R. (2007). Degenerate Primer Design. In: Yuryev, A. (eds) PCR Primer Design. Methods in Molecular Biology™, vol 402. Humana Press. https://doi.org/10.1007/978-1-59745-528-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-528-2_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-725-9

  • Online ISBN: 978-1-59745-528-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics