Skip to main content

Cancer Genomics

  • Chapter
  • First Online:
The Molecular Basis of Human Cancer

Abstract

Cancer results from genetic and epigenetic aberrations, many of which alter the levels of expressed genes and proteins. In the past, cancer researchers have studied genes mainly one at a time. Increasingly, researchers are using genomic technologies like DNA microarrays and next-generation DNA sequencing to investigate thousands of genes simultaneously, defining genes and pathways relevant to cancer mechanisms, diagnosis, prognostication, and treatment. This chapter details genomics technologies, their use and applications in cancer research, and their potential utility in oncologic practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995;270:467–70.

    Article  CAS  PubMed  Google Scholar 

  2. Fodor SP, Rava RP, Huang XC, Pease AC, et al. Multiplexed biochemical assays with biological chips. Nature. 1993;364:555–6.

    Article  CAS  PubMed  Google Scholar 

  3. Lockhart DJ, Dong H, Byrne MC, Follettie MT, et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol. 1996;14:1675–80.

    Article  CAS  PubMed  Google Scholar 

  4. Novoradovskaya N, Whitfield ML, Basehore LS, Novoradovsky A, et al. Universal reference RNA as a standard for microarray experiments. BMC Genomics. 2004;5:20.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Eisen MB, Brown PO. DNA arrays for analysis of gene expression. Methods Enzymol. 1999;303:179–205.

    Article  CAS  PubMed  Google Scholar 

  6. Allison DB, Cui X, Page GP, Sabripour M. Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet. 2006;7:55–65.

    Article  CAS  PubMed  Google Scholar 

  7. Pavlidis P, Li Q, Noble WS. The effect of replication on gene expression microarray experiments. Bioinformatics. 2003;19:1620–7.

    Article  CAS  PubMed  Google Scholar 

  8. Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, et al. Laser capture microdissection. Science. 1996;274:998–1001.

    Article  CAS  PubMed  Google Scholar 

  9. Perou CM, Sorlie T, Eisen MB, van de Rijn M, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52.

    Article  CAS  PubMed  Google Scholar 

  10. Stuart RO, Wachsman W, Berry CC, Wang-Rodriguez J, et al. In silico dissection of cell-type-associated patterns of gene expression in prostate cancer. Proc Natl Acad Sci U S A. 2004;101:615–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Van Gelder RN, von Zastrow ME, Yool A, Dement WC, et al. Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc Natl Acad Sci U S A. 1990;87:1663–7.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Stears RL, Getts RC, Gullans SR. A novel, sensitive detection system for high-density microarrays using dendrimer technology. Physiol Genomics. 2000;3:93–9.

    CAS  PubMed  Google Scholar 

  13. Ma XJ, Wang Z, Ryan PD, Isakoff SJ, et al. A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell. 2004;5:607–16.

    Article  CAS  PubMed  Google Scholar 

  14. April C, Klotzle B, Royce T, Wickham-Garcia E, et al. Whole-genome gene expression profiling of formalin-fixed, paraffin-embedded tissue samples. PLoS One. 2009;4:e8162.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Quackenbush J. Microarray data normalization and transformation. Nat Genet. 2002;32(Suppl):496–501.

    Article  CAS  PubMed  Google Scholar 

  16. Brazma A, Hingamp P, Quackenbush J, Sherlock G, et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet. 2001;29:365–71.

    Article  CAS  PubMed  Google Scholar 

  17. Barrett T, Troup DB, Wilhite SE, Ledoux P, et al. NCBI GEO: mining tens of millions of expression profiles—database and tools update. Nucleic Acids Res. 2007;35:D760–5.

    Article  CAS  PubMed  Google Scholar 

  18. Parkinson H, Kapushesky M, Shojatalab M, Abeygunawardena N, et al. ArrayExpress—a public database of microarray experiments and gene expression profiles. Nucleic Acids Res. 2007;35:D747–50.

    Article  CAS  PubMed  Google Scholar 

  19. Demeter J, Beauheim C, Gollub J, Hernandez-Boussard T, et al. The Stanford Microarray Database: implementation of new analysis tools and open source release of software. Nucleic Acids Res. 2007;35:D766–70.

    Article  CAS  PubMed  Google Scholar 

  20. Xu X, Zhao Y, Simon R. Gene set expression comparison kit for BRB-ArrayTools. Bioinformatics. 2008;24:137–9.

    Article  CAS  PubMed  Google Scholar 

  21. Dresen IM, Husing J, Kruse E, Boes T, Jockel KH. Software packages for quantitative microarray-based gene expression analysis. Curr Pharm Biotechnol. 2003;4:417–37.

    Article  CAS  PubMed  Google Scholar 

  22. Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia. 2007;9:166–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Butte A. The use and analysis of microarray data. Nat Rev Drug Discov. 2002;1:951–60.

    Article  CAS  PubMed  Google Scholar 

  24. Quackenbush J. Computational analysis of microarray data. Nat Rev Genet. 2001;2:418–27.

    Article  CAS  PubMed  Google Scholar 

  25. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A. 2001;98:5116–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Golub TR, Slonim DK, Tamayo P, Huard C, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999;286:531–7.

    Article  CAS  PubMed  Google Scholar 

  27. Tibshirani R, Hastie T, Narasimhan B, Chu G. Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci U S A. 2002;99:6567–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A. 1998;95:14863–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ashburner M, Ball CA, Blake JA, Botstein D, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25:25–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kanehisa M, Goto S, Kawashima S, Nakaya A. The KEGG databases at GenomeNet. Nucleic Acids Res. 2002;30:42–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dahlquist KD, Salomonis N, Vranizan K, Lawlor SC, Conklin BR. GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat Genet. 2002;31:19–20.

    Article  CAS  PubMed  Google Scholar 

  32. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rhodes DR, Kalyana-Sundaram S, Tomlins SA, Mahavisno V, et al. Molecular concepts analysis links tumors, pathways, mechanisms, and drugs. Neoplasia. 2007;9:443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ransohoff DF. Rules of evidence for cancer molecular-marker discovery and validation. Nat Rev Cancer. 2004;4:309–14.

    Article  CAS  PubMed  Google Scholar 

  35. Lembersky BC, Thomas LC. Metastases of unknown primary site. Med Clin North Am. 1996;80:153–71.

    Article  CAS  PubMed  Google Scholar 

  36. Abbruzzese JL, Abbruzzese MC, Lenzi R, Hess KR, Raber MN. Analysis of a diagnostic strategy for patients with suspected tumors of unknown origin. J Clin Oncol. 1995;13:2094–103.

    CAS  PubMed  Google Scholar 

  37. Su AI, Welsh JB, Sapinoso LM, Kern SG, et al. Molecular classification of human carcinomas by use of gene expression signatures. Cancer Res. 2001;61:7388–93.

    CAS  PubMed  Google Scholar 

  38. Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, et al. Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci U S A. 2001;98:15149–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tothill RW, Kowalczyk A, Rischin D, Bousioutas A, et al. An expression-based site of origin diagnostic method designed for clinical application to cancer of unknown origin. Cancer Res. 2005;65:4031–40.

    Article  CAS  PubMed  Google Scholar 

  40. Monzon FA, Lyons-Weiler M, Buturovic LJ, Rigl CT, et al. Multicenter validation of a 1,550-gene expression profile for identification of tumor tissue of origin. J Clin Oncol. 2009;27:2503–8.

    Article  PubMed  Google Scholar 

  41. Alizadeh AA, Eisen MB, Davis RE, Ma C, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403:503–11.

    Article  CAS  PubMed  Google Scholar 

  42. Davis RE, Brown KD, Siebenlist U, Staudt LM. Constitutive nuclear factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J Exp Med. 2001;194:1861–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lossos IS, Jones CD, Warnke R, Natkunam Y, et al. Expression of a single gene, BCL-6, strongly predicts survival in patients with diffuse large B-cell lymphoma. Blood. 2001;98:945–51.

    Article  CAS  PubMed  Google Scholar 

  44. Sorlie T, Perou CM, Tibshirani R, Aas T, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98:10869–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chung CH, Bernard PS, Perou CM. Molecular portraits and the family tree of cancer. Nat Genet. 2002;32(Suppl):533–40.

    Article  CAS  PubMed  Google Scholar 

  46. van 't Veer LJ, Dai H, van de Vijver MJ, He YD, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415:530–6.

    Article  PubMed  Google Scholar 

  47. van de Vijver MJ, He YD, van't Veer LJ, Dai H, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999–2009.

    Article  PubMed  Google Scholar 

  48. Eden P, Ritz C, Rose C, Ferno M, Peterson C. “Good Old” clinical markers have similar power in breast cancer prognosis as microarray gene expression profilers. Eur J Cancer. 2004;40:1837–41.

    Article  CAS  PubMed  Google Scholar 

  49. Bullinger L, Dohner K, Bair E, Frohling S, et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med. 2004;350:1605–16.

    Article  CAS  PubMed  Google Scholar 

  50. Radmacher MD, Marcucci G, Ruppert AS, Mrozek K, et al. Independent confirmation of a prognostic gene-expression signature in adult acute myeloid leukemia with a normal karyotype: a Cancer and Leukemia Group B study. Blood. 2006;108:1677–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ramaswamy S, Ross KN, Lander ES, Golub TR. A molecular signature of metastasis in primary solid tumors. Nat Genet. 2003;33:49–54.

    Article  CAS  PubMed  Google Scholar 

  52. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310:644–8.

    Article  CAS  PubMed  Google Scholar 

  53. Armstrong SA, Staunton JE, Silverman LB, Pieters R, et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet. 2002;30:41–7.

    Article  CAS  PubMed  Google Scholar 

  54. Armstrong SA, Kung AL, Mabon ME, Silverman LB, et al. Inhibition of FLT3 in MLL. Validation of a therapeutic target identified by gene expression based classification. Cancer Cell. 2003;3:173–83.

    Article  CAS  PubMed  Google Scholar 

  55. Lamb J, Crawford ED, Peck D, Modell JW, et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313:1929–35.

    Article  CAS  PubMed  Google Scholar 

  56. Wei G, Twomey D, Lamb J, Schlis K, et al. Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance. Cancer Cell. 2006;10:331–42.

    Article  CAS  PubMed  Google Scholar 

  57. Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science. 1992;258:818–21.

    Article  CAS  PubMed  Google Scholar 

  58. Solinas-Toldo S, Lampel S, Stilgenbauer S, Nickolenko J, et al. Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer. 1997;20:399–407.

    Article  CAS  PubMed  Google Scholar 

  59. Pinkel D, Segraves R, Sudar D, Clark S, et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet. 1998;20:207–11.

    Article  CAS  PubMed  Google Scholar 

  60. Pollack JR, Perou CM, Alizadeh AA, Eisen MB, et al. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet. 1999;23:41–6.

    Article  CAS  PubMed  Google Scholar 

  61. Lucito R, Healy J, Alexander J, Reiner A, et al. Representational oligonucleotide microarray analysis: a high-resolution method to detect genome copy number variation. Genome Res. 2003;13:2291–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Barrett MT, Scheffer A, Ben-Dor A, Sampas N, et al. Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA. Proc Natl Acad Sci U S A. 2004;101:17765–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Selzer RR, Richmond TA, Pofahl NJ, Green RD, et al. Analysis of chromosome breakpoints in neuroblastoma at sub-kilobase resolution using fine-tiling oligonucleotide array CGH. Genes Chromosomes Cancer. 2005;44:305–19.

    Article  CAS  PubMed  Google Scholar 

  64. Olshen AB, Venkatraman ES, Lucito R, Wigler M. Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics. 2004;5:557–72.

    Article  PubMed  Google Scholar 

  65. Tibshirani R, Wang P. Spatial smoothing and hot spot detection for CGH data using the fused lasso. Biostatistics. 2008;9:18–29.

    Article  PubMed  Google Scholar 

  66. Diskin SJ, Eck T, Greshock J, Mosse YP, et al. STAC: a method for testing the significance of DNA copy number aberrations across multiple array-CGH experiments. Genome Res. 2006;16:1149–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Beroukhim R, Getz G, Nghiemphu L, Barretina J, et al. Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc Natl Acad Sci U S A. 2007;104:20007–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Feuk L, Carson AR, Scherer SW. Structural variation in the human genome. Nat Rev Genet. 2006;7:85–97.

    Article  CAS  PubMed  Google Scholar 

  69. Kruglyak L, Nickerson DA. Variation is the spice of life. Nat Genet. 2001;27:234–6.

    Article  CAS  PubMed  Google Scholar 

  70. Frazer KA, Ballinger DG, Cox DR, Hinds DA, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449:851–61.

    Article  CAS  PubMed  Google Scholar 

  71. Kennedy GC, Matsuzaki H, Dong S, Liu WM, et al. Large-scale genotyping of complex DNA. Nat Biotechnol. 2003;21:1233–7.

    Article  CAS  PubMed  Google Scholar 

  72. Gunderson KL, Steemers FJ, Ren H, Ng P, et al. Whole-genome genotyping. Methods Enzymol. 2006;410:359–76.

    Article  CAS  PubMed  Google Scholar 

  73. Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet. 2005;6:95–108.

    Article  CAS  PubMed  Google Scholar 

  74. Stadler ZK, Thom P, Robson ME, Weitzel JN, et al. Genome-wide association studies of cancer. J Clin Oncol. 2010;28:4255–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mei R, Galipeau PC, Prass C, Berno A, et al. Genome-wide detection of allelic imbalance using human SNPs and high-density DNA arrays. Genome Res. 2000;10:1126–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhao X, Li C, Paez JG, Chin K, et al. An integrated view of copy number and allelic alterations in the cancer genome using single nucleotide polymorphism arrays. Cancer Res. 2004;64:3060–71.

    Article  CAS  PubMed  Google Scholar 

  77. Albertson DG, Ylstra B, Segraves R, Collins C, et al. Quantitative mapping of amplicon structure by array CGH identifies CYP24 as a candidate oncogene. Nat Genet. 2000;25:144–6.

    Article  CAS  PubMed  Google Scholar 

  78. Li J, Yang Y, Peng Y, Austin RJ, et al. Oncogenic properties of PPM1D located within a breast cancer amplification epicenter at 17q23. Nat Genet. 2002;31:133–4.

    Article  CAS  PubMed  Google Scholar 

  79. Garraway LA, Widlund HR, Rubin MA, Getz G, et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature. 2005;436:117–22.

    Article  CAS  PubMed  Google Scholar 

  80. Garraway LA, Sellers WR. Lineage dependency and lineage-survival oncogenes in human cancer. Nat Rev Cancer. 2006;6:593–602.

    Article  CAS  PubMed  Google Scholar 

  81. Kendall J, Liu Q, Bakleh A, Krasnitz A, et al. Oncogenic cooperation and coamplification of developmental transcription factor genes in lung cancer. Proc Natl Acad Sci U S A. 2007;104:16663–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Weir BA, Woo MS, Getz G, Perner S, et al. Characterizing the cancer genome in lung adenocarcinoma. Nature. 2007;450:893–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kwei KA, Kim YH, Girard L, Kao J, et al. Genomic profiling identifies TITF1 as a lineage-specific oncogene amplified in lung cancer. Oncogene. 2008;27:3635–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kane S, Gottesman M. The role of cathepsin L in malignant transformation. Semin Cancer Biol. 1990;1:127–36.

    CAS  PubMed  Google Scholar 

  85. Carrasco DR, Tonon G, Huang Y, Zhang Y, et al. High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients. Cancer Cell. 2006;9:313–25.

    Article  CAS  PubMed  Google Scholar 

  86. Fridlyand J, Snijders AM, Ylstra B, Li H, et al. Breast tumor copy number aberration phenotypes and genomic instability. BMC Cancer. 2006;6:96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Hicks J, Krasnitz A, Lakshmi B, Navin NE, et al. Novel patterns of genome rearrangement and their association with survival in breast cancer. Genome Res. 2006;16:1465–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chin K, DeVries S, Fridlyand J, Spellman PT, et al. Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell. 2006;10:529–41.

    Article  CAS  PubMed  Google Scholar 

  89. Pollack JR, Sorlie T, Perou CM, Rees CA, et al. Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proc Natl Acad Sci U S A. 2002;99:12963–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hyman E, Kauraniemi P, Hautaniemi S, Wolf M, et al. Impact of DNA amplification on gene expression patterns in breast cancer. Cancer Res. 2002;62:6240–5.

    CAS  PubMed  Google Scholar 

  91. Bergamaschi A, Kim YH, Wang P, Sorlie T, et al. Distinct patterns of DNA copy number alteration are associated with different clinicopathological features and gene-expression subtypes of breast cancer. Genes Chromosomes Cancer. 2006;45:1033–40.

    Article  CAS  PubMed  Google Scholar 

  92. Carroll JS, Meyer CA, Song J, Li W, et al. Genome-wide analysis of estrogen receptor binding sites. Nat Genet. 2006;38:1289–97.

    Article  CAS  PubMed  Google Scholar 

  93. Pujana MA, Han JD, Starita LM, Stevens KN, et al. Network modeling links breast cancer susceptibility and centrosome dysfunction. Nat Genet. 2007;39:1338–49.

    Article  CAS  PubMed  Google Scholar 

  94. Calvo S, Jain M, Xie X, Sheth SA, et al. Systematic identification of human mitochondrial disease genes through integrative genomics. Nat Genet. 2006;38:576–82.

    Article  CAS  PubMed  Google Scholar 

  95. Weinstein JN. Integromic analysis of the NCI-60 cancer cell lines. Breast Dis. 2004;19:11–22.

    Article  CAS  PubMed  Google Scholar 

  96. Turner NC, Reis-Filho JS. Basal-like breast cancer and the BRCA1 phenotype. Oncogene. 2006;25:5846–53.

    Article  CAS  PubMed  Google Scholar 

  97. Cheok MH, Evans WE. Acute lymphoblastic leukaemia: a model for the pharmacogenomics of cancer therapy. Nat Rev Cancer. 2006;6:117–29.

    Article  CAS  PubMed  Google Scholar 

  98. Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med. 2003;349:2042–54.

    Article  CAS  PubMed  Google Scholar 

  99. Yan PS, Chen CM, Shi H, Rahmatpanah F, et al. Dissecting complex epigenetic alterations in breast cancer using CpG island microarrays. Cancer Res. 2001;61:8375–80.

    CAS  PubMed  Google Scholar 

  100. Weber M, Davies JJ, Wittig D, Oakeley EJ, et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet. 2005;37:853–62.

    Article  CAS  PubMed  Google Scholar 

  101. Gitan RS, Shi H, Chen CM, Yan PS, Huang TH. Methylation-specific oligonucleotide microarray: a new potential for high-throughput methylation analysis. Genome Res. 2002;12:158–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bernstein BE, Kamal M, Lindblad-Toh K, Bekiranov S, et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell. 2005;120:169–81.

    Article  CAS  PubMed  Google Scholar 

  103. Weinmann AS, Yan PS, Oberley MJ, Huang TH, Farnham PJ. Isolating human transcription factor targets by coupling chromatin immunoprecipitation and CpG island microarray analysis. Genes Dev. 2002;16:235–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ziauddin J, Sabatini DM. Microarrays of cells expressing defined cDNAs. Nature. 2001;411:107–10.

    Article  CAS  PubMed  Google Scholar 

  105. Mousses S, Caplen NJ, Cornelison R, Weaver D, et al. RNAi microarray analysis in cultured mammalian cells. Genome Res. 2003;13:2341–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Silva JM, Mizuno H, Brady A, Lucito R, Hannon GJ. RNA interference microarrays: high-throughput loss-of-function genetics in mammalian cells. Proc Natl Acad Sci U S A. 2004;101:6548–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Haab BB, Dunham MJ, Brown PO. Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol. 2001;2:RESEARCH0004.

    Google Scholar 

  108. Sreekumar A, Nyati MK, Varambally S, Barrette TR, et al. Profiling of cancer cells using protein microarrays: discovery of novel radiation-regulated proteins. Cancer Res. 2001;61:7585–93.

    CAS  PubMed  Google Scholar 

  109. MacBeath G, Schreiber SL. Printing proteins as microarrays for high-throughput function determination. Science. 2000;289:1760–3.

    CAS  PubMed  Google Scholar 

  110. Scanlan MJ, Welt S, Gordon CM, Chen YT, et al. Cancer-related serological recognition of human colon cancer: identification of potential diagnostic and immunotherapeutic targets. Cancer Res. 2002;62:4041–7.

    CAS  PubMed  Google Scholar 

  111. Kononen J, Bubendorf L, Kallioniemi A, Barlund M, et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med. 1998;4:844–7.

    Article  CAS  PubMed  Google Scholar 

  112. Xu J, Stolk JA, Zhang X, Silva SJ, et al. Identification of differentially expressed genes in human prostate cancer using subtraction and microarray. Cancer Res. 2000;60:1677–82.

    CAS  PubMed  Google Scholar 

  113. Luo J, Zha S, Gage WR, Dunn TA, et al. Alpha-methylacyl-CoA racemase: a new molecular marker for prostate cancer. Cancer Res. 2002;62:2220–6.

    CAS  PubMed  Google Scholar 

  114. Rubin MA, Zhou M, Dhanasekaran SM, Varambally S, et al. Alpha-methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer. JAMA. 2002;287:1662–70.

    Article  CAS  PubMed  Google Scholar 

  115. Glas AM, Floore A, Delahaye LJ, Witteveen AT, et al. Converting a breast cancer microarray signature into a high-throughput diagnostic test. BMC Genomics. 2006;7:278.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Paik S, Shak S, Tang G, Kim C, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351:2817–26.

    Article  CAS  PubMed  Google Scholar 

  117. Chang HY, Sneddon JB, Alizadeh AA, Sood R, et al. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol. 2004;2:E7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Glinsky GV, Berezovska O, Glinskii AB. Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest. 2005;115:1503–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. West RB, Nuyten DS, Subramanian S, Nielsen TO, et al. Determination of stromal signatures in breast carcinoma. PLoS Biol. 2005;3:e187.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Bild AH, Yao G, Chang JT, Wang Q, et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature. 2006;439:353–7.

    Article  CAS  PubMed  Google Scholar 

  121. Chi JT, Wang Z, Nuyten DS, Rodriguez EH, et al. Gene expression programs in response to hypoxia: cell type specificity and prognostic significance in human cancers. PLoS Med. 2006;3:e47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Carter SL, Eklund AC, Kohane IS, Harris LN, Szallasi Z. A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet. 2006;38:1043–8.

    Article  CAS  PubMed  Google Scholar 

  123. Liu R, Wang X, Chen GY, Dalerba P, et al. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med. 2007;356:217–26.

    Article  CAS  PubMed  Google Scholar 

  124. Petricoin 3rd EF, Hackett JL, Lesko LJ, Puri RK, et al. Medical applications of microarray technologies: a regulatory science perspective. Nat Genet. 2002;32(Suppl):474–9.

    Article  CAS  PubMed  Google Scholar 

  125. Bammler T, Beyer RP, Bhattacharya S, Boorman GA, et al. Standardizing global gene expression analysis between laboratories and across platforms. Nat Methods. 2005;2:351–6.

    Article  PubMed  CAS  Google Scholar 

  126. Irizarry RA, Warren D, Spencer F, Kim IF, et al. Multiple-laboratory comparison of microarray platforms. Nat Methods. 2005;2:345–50.

    Article  CAS  PubMed  Google Scholar 

  127. Fan C, Oh DS, Wessels L, Weigelt B, et al. Concordance among gene-expression-based predictors for breast cancer. N Engl J Med. 2006;355:560–9.

    Article  CAS  PubMed  Google Scholar 

  128. Lander ES, Linton LM, Birren B, Nusbaum C, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.

    Article  CAS  PubMed  Google Scholar 

  129. Davies H, Bignell GR, Cox C, Stephens P, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–54.

    Article  CAS  PubMed  Google Scholar 

  130. Samuels Y, Wang Z, Bardelli A, Silliman N, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304:554.

    Article  CAS  PubMed  Google Scholar 

  131. Bachman KE, Argani P, Samuels Y, Silliman N, et al. The PIK3CA gene is mutated with high frequency in human breast cancers. Cancer Biol Ther. 2004;3:772–5.

    Article  CAS  PubMed  Google Scholar 

  132. Campbell IG, Russell SE, Choong DY, Montgomery KG, et al. Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res. 2004;64:7678–81.

    Article  CAS  PubMed  Google Scholar 

  133. Sjoblom T, Jones S, Wood LD, Parsons DW, et al. The consensus coding sequences of human breast and colorectal cancers. Science. 2006;314:268–74.

    Article  PubMed  CAS  Google Scholar 

  134. Greenman C, Stephens P, Smith R, Dalgliesh GL, et al. Patterns of somatic mutation in human cancer genomes. Nature. 2007;446:153–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. Serial analysis of gene expression. Science. 1995;270:484–7.

    Article  CAS  PubMed  Google Scholar 

  136. Matsumura H, Reich S, Ito A, Saitoh H, et al. Gene expression analysis of plant host-pathogen interactions by SuperSAGE. Proc Natl Acad Sci U S A. 2003;100:15718–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Shendure JA, Porreca GJ, Church GM. Overview of DNA sequencing strategies. Curr Protoc Mol Biol. 2008. Chapter 7:Unit 7.1.

    Google Scholar 

  138. Mardis ER. Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet. 2008;9:387–402.

    Article  CAS  PubMed  Google Scholar 

  139. Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol. 2008;26:1135–45.

    Article  CAS  PubMed  Google Scholar 

  140. Margulies M, Egholm M, Altman WE, Attiya S, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437:376–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Shendure J, Porreca GJ, Reppas NB, Lin X, et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science. 2005;309:1728–32.

    Article  CAS  PubMed  Google Scholar 

  142. Harris TD, Buzby PR, Babcock H, Beer E, et al. Single-molecule DNA sequencing of a viral genome. Science. 2008;320:106–9.

    Article  CAS  PubMed  Google Scholar 

  143. Schadt EE, Turner S, Kasarskis A. A window into third-generation sequencing. Hum Mol Genet. 2010;19:R227–40.

    Article  CAS  PubMed  Google Scholar 

  144. Service RF. Gene sequencing. The race for the $1000 genome. Science. 2006;311:1544–6.

    Article  CAS  PubMed  Google Scholar 

  145. Morozova O, Marra MA. Applications of next-generation sequencing technologies in functional genomics. Genomics. 2008;92:255–64.

    Article  CAS  PubMed  Google Scholar 

  146. Wold B, Myers RM. Sequence census methods for functional genomics. Nat Methods. 2008;5:19–21.

    Article  CAS  PubMed  Google Scholar 

  147. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5:621–8.

    Article  CAS  PubMed  Google Scholar 

  148. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10:57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Pepke S, Wold B, Mortazavi A. Computation for ChIP-seq and RNA-seq studies. Nat Methods. 2009;6:S22–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Maher CA, Kumar-Sinha C, Cao X, Kalyana-Sundaram S, et al. Transcriptome sequencing to detect gene fusions in cancer. Nature. 2009;458:97–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Palanisamy N, Ateeq B, Kalyana-Sundaram S, Pflueger D, et al. Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nat Med. 2010;16:793–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Beck AH, Weng Z, Witten DM, Zhu S, et al. 3′-End sequencing for expression quantification (3SEQ) from archival tumor samples. PLoS One. 2010;5:e8768.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Barski A, Cuddapah S, Cui K, Roh TY, et al. High-resolution profiling of histone methylations in the human genome. Cell. 2007;129:823–37.

    Article  CAS  PubMed  Google Scholar 

  154. Johnson DS, Mortazavi A, Myers RM, Wold B. Genome-wide mapping of in vivo protein-DNA interactions. Science. 2007;316:1497–502.

    Article  CAS  PubMed  Google Scholar 

  155. Park PJ. ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet. 2009;10:669–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Brunner AL, Johnson DS, Kim SW, Valouev A, et al. Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. Genome Res. 2009;19:1044–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Fouse SD, Nagarajan RP, Costello JF. Genome-scale DNA methylation analysis. Epigenomics. 2010;2:105–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Volik S, Zhao S, Chin K, Brebner JH, et al. End-sequence profiling: sequence-based analysis of aberrant genomes. Proc Natl Acad Sci U S A. 2003;100:7696–701.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Campbell PJ, Stephens PJ, Pleasance ED, O'Meara S, et al. Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat Genet. 2008;40:722–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Stephens PJ, McBride DJ, Lin ML, Varela I, et al. Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature. 2009;462:1005–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Parsons DW, Jones S, Zhang X, Lin JC, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321:1807–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Dang L, White DW, Gross S, Bennett BD, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462:739–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Gnirke A, Melnikov A, Maguire J, Rogov P, et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol. 2009;27:182–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Ley TJ, Mardis ER, Ding L, Fulton B, et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature. 2008;456:66–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med. 2010;363:1532–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Ley TJ, Ding L, Walter MJ, McLellan MD, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363:2424–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature. 2009;458:719–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Pleasance ED, Stephens PJ, O'Meara S, McBride DJ, et al. A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature. 2009;463:184–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature. 2010;463:191–6.

    Article  CAS  PubMed  Google Scholar 

  170. Hudson TJ, Anderson W, Artez A, Barker AD, et al. International network of cancer genome projects. Nature. 2010;464:993–8.

    Article  CAS  PubMed  Google Scholar 

  171. Forbes SA, Tang G, Bindal N, Bamford S, et al. COSMIC (the Catalogue of Somatic Mutations in Cancer): a resource to investigate acquired mutations in human cancer. Nucleic Acids Res. 2010;38:D652–7.

    Article  CAS  PubMed  Google Scholar 

  172. MacConaill LE, Campbell CD, Kehoe SM, Bass AJ, et al. Profiling critical cancer gene mutations in clinical tumor samples. PLoS One. 2009;4:e7887.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan R. Pollack M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pollack, J.R. (2017). Cancer Genomics. In: Coleman, W., Tsongalis, G. (eds) The Molecular Basis of Human Cancer. Humana Press, New York, NY. https://doi.org/10.1007/978-1-59745-458-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-458-2_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-934115-18-3

  • Online ISBN: 978-1-59745-458-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics