Skip to main content

Equality of the Sexes? Parent-of-Origin Effects on Transcription and de novo Mutations

  • Chapter
Bioinformatics for Systems Biology

Abstract

Two main categories of the parent-of-origin effects are reviewed in this chapter: parent-of-origin effects on transcription, or genomic imprinting, and parent-of-origin effects on the development of de novo mutations. Each type of parent-of-origin effect is described, and the mechanisms that contribute to each discussed. The parent-of-origin effect database provides a catalog reports of genomic imprinting and related effects as well as reports of the parental origin of spontaneous mutations. This database provides a useful tool for finding genes, diseases, or traits that exhibit a parent-of-origin effect in humans and animals, conducting comparative analyses of the imprinted genes among different species, and examining the role of parent-of-origin effects for different types of spontaneous mutations in human genes.

Portions of this chapter are reproduced with some modification from R. L. Glaser, E. W. Jabs, Dear Old Dad. Sci. Aging Knowl. Environ. 2004 (3), re1 (2004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Suggested Reading

Introduction to the Range of Parent-of-Origin Effects

  1. Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nature Rev Genet. 2001;2:21–32.

    Article  CAS  PubMed  Google Scholar 

  2. Wood AJ, Oakey RJ. Genomic imprinting in mammals: emerging themes and established theories. PLoS Genet. 2006;2: e147.

    Article  PubMed  CAS  Google Scholar 

  3. Glaser RL, Jabs EW. Dear old dad. Sci Aging Knowl Environ. 2004;3 re1.

    Google Scholar 

  4. Crow JF. The origins, patterns and implications of human spontaneous mutation. Nature Rev Genet. 2000;1:40–47.

    Article  CAS  PubMed  Google Scholar 

  5. Bittel DC, Butler MG. Prader-Willi syndrome: clinical genetics, cytogenetics and molecular biology. Expert Rev Mol Med. 2005;7:1–20.

    Article  PubMed  Google Scholar 

  6. Lalande M, Calciano MA. Molecular epigenetics of Angelman syndrome. Cell Mol Life Sci. 2007;64:947–960.

    Article  CAS  PubMed  Google Scholar 

  7. Enklaar T, Zabel BU, Prawitt D. Beckwith-Wiedemann syndrome: multiple molecular mechanisms. Expert Rev Mol Med. 2006;8:1–19.

    Article  PubMed  Google Scholar 

  8. Tycko B, Morison IM. Physiological functions of imprinted genes. J Cell Phys. 2002;192:245–258.

    Article  CAS  Google Scholar 

  9. Georges M, Charlier C, Cockett N. The callipyge locus: evidence for the trans interaction of reciprocally imprinted genes. Trends Genet. 2003;19:248–252.

    Article  CAS  PubMed  Google Scholar 

  10. Wilkin DJ, Szabo R, Cameron S, et al. Mutations in fibroblast growth factor receptor 3 in sporadic cases of achondroplasia occur exclusively on the paternally-derived chromosome. Am J Hum Genet. 1998;63:711–716.

    Article  CAS  PubMed  Google Scholar 

  11. Moloney DM, Slaney DF, Oldridge M, et al. Exclusive paternal origin of new mutations in Apert syndrome. Nat Genet. 1996;13:48–53.

    Article  CAS  PubMed  Google Scholar 

  12. Glaser RL, Jiang W, Boyadjiev S, et al. Paternal origin of FGFR2 mutations in sporadic cases of Crouzon syndrome and Pfeiffer syndrome. Am J Hum Genet. 2000;66:768–777.

    Article  CAS  PubMed  Google Scholar 

  13. Petersen MB, Mikkelsen M. Nondisjunction in trisomy 21: Origin and mechanisms. Cytogenet Cell Genet. 2000;91:199–203.

    Article  CAS  PubMed  Google Scholar 

  14. Morison IM, Reeve AE. A catalogue of imprinted genes and parent-of-origin effects in humans and animals. Hum Mol Genet. 1998;7:1599–1609.

    Article  CAS  PubMed  Google Scholar 

  15. Morison IM, Paton CJ, Cleverly SD. The imprinted gene and parent-of-origin effect database. Nucleic Acids Res. 2001;29:275–276.

    Article  CAS  PubMed  Google Scholar 

  16. Morison IM, Ramsay JP, Spencer HG. A census of mammalian imprinting. Trends Genet. 2005;21:457–465.

    Article  CAS  PubMed  Google Scholar 

  17. Glaser RL, Ramsay JP, Morison IM. The imprinted gene and parent-of-origin effect database now includes parental origin of de novo mutations. Nucleic Acids Res Database Issue. 2006;34:D29-D31.

    Article  CAS  Google Scholar 

  18. Nikaido, I, Saito, C, Mizuno, Y, Meguro, M, Bono, H, Kadomura, M, Kono, T, Morris, GA, Lyons, PA, Oshimura, M, Hayashizaki, Y, and Okazaki, Y. (2003) Discovery of imprinted transcripts in the mouse transcriptome using large-scale expression profiling. Genome Res, 13, 1402–1409.

    Article  CAS  PubMed  Google Scholar 

Imprinting Effects

  1. Edwards CA, Ferguson-Smith AC. Mechanisms regulating imprinted genes in clusters. Curr Opin Cell Biol. 2007;19:281–289.

    Article  CAS  PubMed  Google Scholar 

  2. Spahn L, Barlow DP. An ICE pattern crystallizes. Nat Genet. 2003;35:11–12.

    Article  CAS  PubMed  Google Scholar 

  3. Seidl CI, Stricker SH, Barlow DP. The imprinted air ncRNA is an atypical RNAPII transcript that evades splicing and escapes nuclear export. Embo J. 2006;25:3565–3575.

    Article  CAS  PubMed  Google Scholar 

  4. Paoloni-Giacobino A, D’Aiuto L, Cirio MC, Reinhart B, Chaillet JR. Conserved features of imprinted differentially methylated domains. Gene. 2007; Epub ahead of print.

    Google Scholar 

  5. Okazaki Y, Furuno M, Kasukawa T, et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature. 2002;420:563–573.

    Article  PubMed  Google Scholar 

  6. Takagi N, Sasaki M. Preferential inactivation of the paternal derived X chromosome in the extraembryonic membranes of the mouse. Nature. 1975;256:640–642.

    Article  CAS  PubMed  Google Scholar 

  7. Graves JA. Mammals that break the rules: genetics of marsupials and monotremes. Ann Rev Genet. 1996; 30:233–260.

    Article  CAS  PubMed  Google Scholar 

  8. Pauler FM, Koerner MV, Barlow DP. Silencing by imprinted noncoding RNAs: is transcription the answer? Trends Genet. 2007;23:284–292.

    Article  CAS  PubMed  Google Scholar 

  9. Lewis A, Mitsuya K, Umlauf D, et al. Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation. Nat Genet. 2004;36:1291–1295.

    Article  CAS  PubMed  Google Scholar 

  10. Umlauf D, Goto Y, Cao R, et al. Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nat Genet. 2004;36:1296–1300.

    Article  CAS  PubMed  Google Scholar 

  11. Le Meur E, Watrin F, Landers M, Sturny R, Lalande M, Muscatelli F. Dynamic developmental regulation of the large non-coding RNA associated with the mouse 7C imprinted chromosomal region. Dev Biol. 2005;286:587–600.

    Article  PubMed  CAS  Google Scholar 

  12. Kurukuti S, Tiwari VK, Tavoosidana G, et al. CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. Proc Natl Acad Sci USA. 2006;103:10684–10689.

    Article  CAS  PubMed  Google Scholar 

  13. O’Neill MJ. The influence of non-coding RNAs on allele-specific gene expression in mammals. Hum Mol Genet. 2005;14 Suppl 1:R113–120.

    Article  PubMed  CAS  Google Scholar 

  14. Davis E, Caiment F, Tordoir X, et al. RNAi-mediated allelic trans-interaction at the imprinted Rtl1/Peg11 locus. Curr Biol. 2005;15:743–749.

    Article  CAS  PubMed  Google Scholar 

  15. Schule B, Albalwi M, Northrop E, et al. Molecular breakpoint cloning and gene expression studies of a novel translocation t(4;15)(q27; q11.2) associated with Prader-Willi syndrome. BMC Med Genet. 2005;6:18.

    Article  PubMed  CAS  Google Scholar 

  16. Seitz H, Royo H, Bortolin ML, Lin SP, Ferguson-Smith AC, Cavaille J. A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. Genome Res. 2004;14:1741–1748.

    Article  CAS  PubMed  Google Scholar 

  17. Cai X, Cullen BR. The imprinted H19 noncoding RNA is a primary microRNA precursor. Rna. 2007;13:313–316.

    Article  CAS  PubMed  Google Scholar 

  18. Killian JK, Nolan CM, Stewart N, et al. Monotreme IGF2 expression and ancestral origin of genomic imprinting. J Exp Zool. 2001;291:205–212.

    Article  CAS  PubMed  Google Scholar 

  19. Killian JK, Byrd JC, Jirtle JV, et al. M6P/IGF2R imprinting evolution in mammals. Mol Cell. 2000;5:707–716.

    Article  CAS  PubMed  Google Scholar 

  20. Wang Y, Joh K, Masuko S, et al. The mouse Murr1 gene is imprinted in the adult brain, presumably due to transcriptional interference by the antisense-oriented U2af1-rs1 gene. Mol Cell Biol. 2004;24:270–279.

    Article  PubMed  CAS  Google Scholar 

  21. Xu Y, Goodyer CG, Deal C, Polychronakos C. Functional polymorphism in the parental imprinting of the human IGF2R gene. Biochem Biophys Res Comm. 1993;197:747–754.

    Article  CAS  PubMed  Google Scholar 

  22. Monk D, Arnaud P, Apostolidou S, et al. Limited evolutionary conservation of imprinting in the human placenta. Proc Natl Acad Sci USA. 2006;103:6623–6628.

    Article  CAS  PubMed  Google Scholar 

  23. Killian JK, Nolan CM, Wylie AA, et al. Divergent evolution in M6P/IGF2R imprinting from the Jurassic to the Quaternary. Hum Mol Genet. 2001;10:1721–1728.

    Article  CAS  PubMed  Google Scholar 

  24. Braidotti G, Baubec T, Pauler F, et al. The air noncoding RNA: an imprinted cis-silencing transcript. Cold Spring Harb Symp Quant Biol. 2004;69:55–66.

    Article  CAS  PubMed  Google Scholar 

  25. Meguro M, Mitsuya K, Sui H, et al. Evidence for uni-parental, paternal expression of the human GABA(A) Receptor subunit genes, using microcell-mediated chromosome transfer. Hum Mol Genet.1997;6:2127–2133.

    Article  CAS  PubMed  Google Scholar 

  26. Bittel DC, Kibiryeva N, Talebizadeh Z, Butler MG. Microarray analysis of gene/transcript expression in Prader-Willi syndrome: deletion versus UPD. J Med Genet, 2003;40:568–574.

    Article  CAS  PubMed  Google Scholar 

  27. Buettner VL, Longmate JA, Barish ME, Mann JR, Singer-Sam J. Analysis of imprinting in mice with uni-parental duplication of proximal chromosomes 7 and 15 by use of a custom oligonucleotide microarray. Mamm Genome. 2004;15:199–209.

    Article  CAS  PubMed  Google Scholar 

  28. Liljelund P, Handforth A, Homanics GE, Olsen RW. GABAA receptor beta3 subunit gene-deficient heterozygous mice show parent-of-origin and gender-related differences in beta3 subunit levels, EEG, and behavior. Brain Res Dev Brain Res. 2005;157:150–161.

    Article  CAS  PubMed  Google Scholar 

  29. Kayashima T, Ohta T, Niikawa N, Kishino T. On the conflicting reports of imprinting status of mouse ATP10a in the adult brain: strain-background-dependent imprinting? J Hum Genet. 2003;48:492–493; author reply 494.

    Article  PubMed  Google Scholar 

  30. Jinno Y, Yun K, Nishiwaki K, et al. Mosaic and polymorphic imprinting of the WT1 gene in humans. Nat Genet. 1994;6:305–309.

    Article  CAS  PubMed  Google Scholar 

  31. Nishiwaki K, Niikawa N, Ishikawa M. Polymorphic and tissue-specific imprinting of the human Wilms tumor gene, WT1. Jpn J Hum Genet. 1997;42:205–211.

    Article  CAS  PubMed  Google Scholar 

  32. Mitsuya K, Sui, Meguro M, et al. Paternal expression of WT1 in human fibroblasts and lymphocytes. Hum Mol Genet.1997;6:2243–2246.

    Article  CAS  PubMed  Google Scholar 

  33. Dallosso AR, Hancock AL, Brown KW, Williams AC, Jackson S, Malik K. Genomic imprinting at the WT1 gene involves a novel coding transcript (AWT1) that shows deregulation in Wilms' tumours. Hum Mol Genet. 2004;13:405–415.

    Article  CAS  PubMed  Google Scholar 

  34. Lo HS, Wang Z, Hu Y, et al. Allelic variation in gene expression is common in the human genome. Genome Res. 2003;13:1855–1862.

    Article  CAS  PubMed  Google Scholar 

Uni-parental Disomy

  1. Engel E. Uni-parental disomy revisited: The first twelve years. Am J Med Genet. 1993;46:670–674.

    Article  CAS  PubMed  Google Scholar 

  2. Nicholls RD, Knoll JHM, Butler MG, Karam S, Lalande M. Genetic imprinting suggested by maternal heterodisomy in non-deletion Prader-Willi syndrome. Nature. 1989;342:281–285.

    Article  CAS  PubMed  Google Scholar 

  3. Cattanach BM, Beechey CV. Genomic imprinting in the mouse: possible final analysis. In: Reik W, Surani A, eds. Genomic Imprinting. Oxford: New York: OUP/IRL Press, 1997:118–145.

    Google Scholar 

  4. Beechey CV, Cattanach BM, Blake A, Peters J. MRC Mammalian Genetics Unit, Harwell, Oxfordshire. World Wide Web Site — Mouse Imprinting Data and References 2005. cited; Available from: http://www.mgu.har.mrc.ac.uk/research/imprinting/

Parental Effects in Genetic Linkage

  1. Niikawa N, Ishikiriyama S, Takahashi S, et al. The Wiedemann-Beckwith syndrome: pedigree studies on five families with evidence for autosomal dominant inheritance with variable expressivity. Am J Med Genet. 1986;24:41–55.

    Article  CAS  PubMed  Google Scholar 

  2. Davies SJ, Hughes HE. Imprinting in Albright's hereditary osteodystrophy. J Med Genet. 1993;30:101–103.

    Article  CAS  PubMed  Google Scholar 

  3. Baysal BE, Farr JE, Rubinstein WS, et al. Fine mapping of an imprinted gene for familial nonchromaffin paragangliomas, on chromosome 11q23. Am J Hum Genet. 1997;60:121–132.

    CAS  PubMed  Google Scholar 

  4. Milunsky J, DeStefano AL, Huang XL, et al. Familial paragangliomas: linkage to chromosome 11q23 and clinical implications. Am J Med Genet. 1997;72:66–70.

    Article  CAS  PubMed  Google Scholar 

  5. Hensen EF, Jordanova ES, Van Minderhout IJ, et al. Somatic loss of maternal chromosome 11 causes parent-of-origin-dependent inheritance in SDHD-linked paraganglioma and phaeochromocytoma families. Oncogene. 2004;23:4076–4083.

    Article  CAS  PubMed  Google Scholar 

  6. Shete S, Zhou X. Parametric approach to genomic imprinting analysis with applications to Angelman's syndrome. Hum Hered. 2005;59:26–33.

    Article  CAS  PubMed  Google Scholar 

  7. Dudbridge F, Gusnanto A, Koeleman BP. Detecting multiple associations in genome-wide studies. Hum Genom. 2006;2:310–317.

    CAS  Google Scholar 

  8. Siwek M, Cornelissen SJ, Nieuwland MG, et al. Detection of QTL for immune response to sheep red blood cells in laying hens. Anim Genet. 2003;34:422–428.

    Article  CAS  PubMed  Google Scholar 

  9. Buitenhuis AJ, Rodenburg TB, van Hierden YM, et al. Mapping quantitative trait loci affecting feather pecking behavior and stress response in laying hens. Poult Sci. 2003;82:1215–1222.

    CAS  PubMed  Google Scholar 

  10. Gorlova OY, Lei L, Zhu D, et al. Imprinting detection by extending a regression-based QTL analysis method. Hum Genet. 2007;Epub ahead of print.

    Google Scholar 

  11. Cui Y. A statistical framework for genome-wide scanning and testing of imprinted quantitative trait loci. J Theor Biol. 2007;244:115–126.

    Article  CAS  PubMed  Google Scholar 

  12. Savory TH. The mule. Sci Amer. 1970;223:102–109.

    Article  Google Scholar 

  13. Mendel GJ. Experiments in plant hybridisation. Edinburgh: Oliver & Boyd. 1965;7–51.

    Google Scholar 

Parent-of-Origin Effects on De Novo Mutations

  1. Weinberg W. Zur Vererbung des Zwergwuchses. Arch Rassen-u Gesell. Biol. 1912;9:710–718.

    Google Scholar 

  2. Vogel F and Rathenberg R. Spontaneous mutation in man. Adv Hum Genet. 1975;5:223–318.

    CAS  PubMed  Google Scholar 

  3. Vogel F and Motulsky AG. Mutation: Spontaneous mutation in germ cells. In: Vogel F and Motulsky, eds. Human Genetics: Problems and Approaches, 3rd ed., New York: Springer, 1997:385–430.

    Google Scholar 

  4. Mørch ET. Chondrodystrophic dwards in Denmark. (Opera ex Domo Biol Hered Hum Univ Hafn Munskgaard, Copenhagen). 1941:3.

    Google Scholar 

  5. Crow JF. Spontaneous mutation in man. Mutat Res. 1999;43:5–9.

    Google Scholar 

  6. Penrose LS. Parental age in achondroplasia and mongolism. Am J Hum Genet. 1957;9:167–169.

    CAS  PubMed  Google Scholar 

  7. Risch R, Reich EW, Wishnick MW and McCarthy JG. Spontaneous mutation and parental age in humans. Am J Hum Genet. 1987;41:218–248.

    CAS  PubMed  Google Scholar 

  8. Zampino G, Pantaleoni F, Carta C, et al. Diversity, parental germline origin, and phenotypic spectrum of de novo HRAS missense changes in Costello syndrome. Hum Mutat. 2007;28:265–272.

    Article  CAS  PubMed  Google Scholar 

  9. Sol-Church K, Stabley DL, Nicholson L, Gonzalez IL, Gripp KW. Paternal bias in parental origin of HRAS mutations in Costello syndrome. Hum Mutat. 2006;27:736–741.

    Article  CAS  PubMed  Google Scholar 

  10. Rannan-Eliya SV, Taylor IB, de Heer IM, van den Ouweland AMW, Wall SA, Wilkie AOM. Paternal origin of FGFR3 mutations in Muenke-type craniosynostosis. Hum Genet. 2004;115:200–207.

    Article  CAS  PubMed  Google Scholar 

  11. Schuffenecker I, Ginet N, Goldgar D, et al. Prevalence and parental origin of de novo RET mutations in multiple endocrine neoplasia type 2A and familial medullary thyroid carcinoma. Le Groupe d'Etude des Tumeurs a Calcitonine. Am J Hum Genet. 1997;60:233–237.

    CAS  PubMed  Google Scholar 

  12. Carlson KM, Bracamontes J, Jackson CE, et al. Parent-of-origin effects in multiple endocrine neoplasia type 2B. Am J Hum Genet. 1994;55:1076–1082.

    CAS  PubMed  Google Scholar 

  13. Tartaglia M, Cordeddu V, Change H, et al. Paternal germline origin and sex-ratio distortion in transmission of PTPN11 mutations in Noonan syndrome. Am J Hum Genet. 2004;75:492–497.

    Article  CAS  PubMed  Google Scholar 

  14. Penrose LS. Parental age and mutation. Lancet. 1955;269:312–313.

    Article  CAS  PubMed  Google Scholar 

  15. Eppig JJ, Vivieros MM, Marin-Bivens C, De La Fuente R. Regulation of mammalian oocyte maturation. In: Leung PCK and EY Adashi, eds. The Ovary. Amsterdam: Elsevier Academic Press, 2004:113–129.

    Google Scholar 

  16. Muller F, Rebiffé M, Taillandier A, Oury JF, Mornet E. Parental origin of the extra chromosome in prenatally diagnosed fetal trisomy 21. Hum Genet. 2000;106:340–344.

    Article  CAS  PubMed  Google Scholar 

  17. Hertz JM, Juncker I, Persson U, et al. Detection of mutations in the COL4A5 gene by SSCP in X-linked Alport syndrome. Hum Mutat. 2001;18:141–148.

    Article  CAS  PubMed  Google Scholar 

  18. Taillandier A, Sallinen SL, Brun-Heath I, De Mazancourt P, Serre JL, Mornet E. Childhood hypophosphatasia due to a de novo missense mutation in the tissue-nonspecific alkaline phosphatase gene. J Clin Endocrinol Metab. 2005;90:2436–2439.

    Article  CAS  PubMed  Google Scholar 

  19. Roa BB, Garcia CA, Suter U, et al. Charcot-Marie-Tooth disease type 1A. Association with a spontaneous point mutation in the PMP22 gene. N Engl J Med. 1993;329:96–101.

    Article  CAS  PubMed  Google Scholar 

  20. Orfali KA, Ohene-Abuakwa Y, Ball SE. Diamond Blackfan anaemia in the UK: clinical and genetic heterogeneity. Br J Haematol. 2004;125:243–252.

    Article  CAS  PubMed  Google Scholar 

  21. Mulligan LM, Eng C, Healey CS, et al. A de novo mutation of the RET proto-oncogene in a patient with MEN 2A. Hum Mol Genet. 1994;3:1007–1008.

    Article  CAS  PubMed  Google Scholar 

  22. Zedenius J, Wallin G, Hamberger B, Nordenskjöld M, Weber G, Larsson C. Somatic and MEN 2A de novo mutations identified in the RET proto-oncogene by screening of sporadic MTC:s. Hum Mol Genet. 1994;3:1259–1262.

    Article  CAS  PubMed  Google Scholar 

  23. Wohllk N, Cote GJ, Bugalho MM, Ordonez N, Evans DB, Goepfert H, Khorana S, et al. Relevance of RET proto-oncogene mutations in sporadic medullary thyroid carcinoma. J Clin Endocrinol Metab. 1996;81:3740–3745.

    Article  CAS  PubMed  Google Scholar 

  24. Eriksson M, Brown WT, Gordon LB. Recurrent de novo point mutation sin lamin A case Hutchinson-Guilford progeria syndrome. Nature. 2003;423:293–298.

    Article  CAS  PubMed  Google Scholar 

  25. Cao H, Hegel A. LMNA is mutated in Hutchinson-Guilford progeria (MIM 176670) but not in Wiedemann-Rautenstrach progeroid syndrome (MIM 264090). J Hum Genet. 2003;48:271–274.

    Article  CAS  PubMed  Google Scholar 

  26. Mulligan LM, Kwok JB, Healey CS, et al. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature. 1993;363:458–460.

    Article  CAS  PubMed  Google Scholar 

  27. Eng C, Clayton D, Schuffenecker I. The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. International RET mutation consortium analysis. JAMA. 1996;276:1575–1579.

    Article  CAS  PubMed  Google Scholar 

  28. Passos-Bueno MR, Wilcox WR, Jabs EW, Sertie AL, Alonso LG, Kitoh H. Clinical spectrum of fibroblast growth factor receptor mutations. Hum Mutat. 1999;14:115–125.

    Article  CAS  PubMed  Google Scholar 

  29. Tartaglia M, Kalidas K, Shaw A, et al. PTPN11 Mutations in Noonan Syndrome: Molecular Spectrum, Genotype-Phenotype Correlation, and Phenotypic Heterogeneity. Am J Hum Genet. 2002;70:1555–1563.

    Article  CAS  PubMed  Google Scholar 

  30. Oldridge M, Lunt PW, Zackai EH, et al. Genotype-phenotype correlation for nucleotide substitutions in the IgII-IgIII linker of FGFR2. Hum Mol Genet. 1997;6:137–143.

    Article  CAS  PubMed  Google Scholar 

  31. Goriely A, McVean GA, van Pelt AM, et al. Gain-of-function amino acid substitutions drive positive selection of FGFR2 mutations in human spermatogonia. Proc Natl Acad Sci USA. 2005;102:6051–6056.

    Article  CAS  PubMed  Google Scholar 

  32. Van Dissel-Emiliani FM, De Boer-Brouwer M, de Rooij DG. Effect of fibroblast growth factor-2 on Sertoli cells and gonocytes in coculture during the perinatal period. Endocrinology. 1996;137:n647–654.

    Article  Google Scholar 

  33. Cancilla B, Risbridger GP, Differential localization of fibroblast growth factor receptor-1, -2, -3, and -4 in fetal, immature, and adult rat testes. Biol Reprod. 1998;58:1138–1145.

    Article  CAS  PubMed  Google Scholar 

  34. Cancilla B, Davies A, Ford-Perriss M, Risbridger GP. Discrete cell- and stage-specific localisation of fibroblast growth factors and receptor expression during testis development. J Endocrinol. 2000;64;149–159.

    Article  Google Scholar 

  35. Lemmon MA, Schlessinger J. Regulation of signal transduction and signal diversity by receptor oligomerization. Trends Biochem Sci. 1994;19:459–463.

    Article  CAS  PubMed  Google Scholar 

  36. Bajpai M, Asin S, Doncel GF. Effect of tyrosine kinase inhibitors on tyrosine phosphorylation and motility parameters in human sperm. Arch Androl. 2003;49:229–246.

    Article  CAS  PubMed  Google Scholar 

  37. Urner F, Sakkas D. Protein phosphorylation in mammalian spermatozoa. Reproduction. 2003;125:17–26.

    Article  CAS  PubMed  Google Scholar 

  38. Asai N, Iwashita T, Matsuyama M, Takahashi M. Mechanism of activation of the ret proto-oncogene by multiple endocrine neoplasia 2A mutations. Mol Cell. Biol. 1995;15:1613–1619.

    CAS  PubMed  Google Scholar 

  39. Wang Y, Spatz MK, Kannan K, et al. A mouse model for achondroplasia produced by targeting fibroblast growth factor receptor 3. Proc Natl Acad Sci. USA. 1999;96:4455–4460.

    Article  CAS  PubMed  Google Scholar 

  40. Kannan K, Givol D. FGF receptor mutations: dimerization syndromes, cell growth suppression, and animal models. IUBMB Life. 2000;49:197–205.

    CAS  PubMed  Google Scholar 

  41. Yu K, Herr AB, Waksman A, Ornitz DM. Loss of fibroblast growth factor receptor 2 ligand-binding specificity in Apert syndrome. Proc Natl Acad Sci. USA. 2000;97:14536–14541.

    Article  CAS  PubMed  Google Scholar 

  42. Ibrahimi OA, Eliseenkova AV, Plotnikov AN, Yu K, Ornitz DM, Mohammadi M. Structural basis for fibroblast growth factor receptor 2 activation in Apert syndrome. Proc Natl Acad Sci. USA. 2001;98:7182–7187.

    Article  CAS  PubMed  Google Scholar 

  43. Li R, Johnson AB, Salomons GS, et al. Propensity for paternal inheritance of de novo mutations in Alexander disease. Hum Genet. 2006;119:137–144.

    Article  PubMed  Google Scholar 

  44. Twigg SR, Matsumoto K, Kidd AM, et al. The origin of EFNB1 mutations in craniofrontonasal syndrome: frequent somatic mosaicism and explanation of the paucity of carrier males. Am J Hum Genet. 2006;78:999–1010.

    Article  CAS  PubMed  Google Scholar 

  45. Aretz S, Uhlhaas S, Caspari R, et al. Frequency and parental origin of de novo APC mutations in familial adenomatous polyposis. Eur J Hum Genet. 2004;12:52–58.

    Article  CAS  PubMed  Google Scholar 

  46. Becker J, Schwaab R, Möller-Taube A, et al. Characterization of the factor VIII defect in 147 patients with sporadic hemophilia A: family studies indicate a mutation type-dependent sex ratio of mutation frequencies. Am J Hum Genet. 1996;58:657–670.

    CAS  PubMed  Google Scholar 

  47. Ketterling RP, Vielhaber E, Li X, et al. Germline origins in the human F9 gene: frequent G:C–>A:T mosaicism and increased mutations with advanced maternal age. Hum Genet. 1999;105:629–640.

    Article  CAS  PubMed  Google Scholar 

  48. Yin L, Seri M, Barone V, Tocco T, Scaranari M, Romeo G. Prevalence and parental origin of de novo RET mutations in Hirschsprung's disease. Eur J Hum Genet. 1996;4:356–358.

    CAS  PubMed  Google Scholar 

  49. Edghill EL, Gloyn AL, Goriely A, et al. Origin of de novo KCNJ11 mutations and risk of neonatal diabetes for subsequent siblings. J Clin Endocrinol Metab. 2007;92:1773–1777.

    Article  CAS  PubMed  Google Scholar 

  50. Stephens K, Kayes L, Riccardi VM, Rising M, Sybert VP, Pagon RA. Preferential mutation of the neurofibromatosis type 1 gene in paternally-derived chromosomes. Hum Genet. 1992;88:279–282.

    Article  CAS  PubMed  Google Scholar 

  51. Lazaro C, Gaona A, Ainsworth P, et al. Sex differences in mutational rate and mutational mechanism in the NF1 gene in neurofibromatosis type 1 patients. Hum Genet. 1996;98:696–699.

    Article  CAS  PubMed  Google Scholar 

  52. Jadayel D, Fain P, Upadhyaya M, et al. Paternal origin of new mutations in von Recklinghausen neurofibromatosis. Nature. 1990;343:558–559.

    Article  CAS  PubMed  Google Scholar 

  53. Kluwe L, Mautner V, Parry DM, et al. The parental origin of new mutations in neurofibromatosis 2. Neurogenetics. 2000;3:17–24.

    Article  CAS  PubMed  Google Scholar 

  54. Mimault C, Giraud G, Courtois V, et al. Proteolipoprotein gene analysis in 82 patients with sporadic Pelizaeus-Merzbacher Disease: duplications, the major cause of the disease, originate more frequently in male germ cells, but point mutations do not. The Clinical European Network on Brain Demyelinating Disease. Am J Hum Genet. 1999;65:360–369.

    Article  CAS  PubMed  Google Scholar 

  55. Amir RE, Van den Veyver IB, Schultz R, et al. Influence of mutation type and X chromosome inactivation on Rett syndrome phenotypes. Ann Neurol. 2000;47:670–679.

    CAS  Google Scholar 

  56. Girard M, Couvert P, Carrie A, et al. Parental origin of de novo MECP2 mutations in Rett syndrome. Eur J Hum Genet. 2001;9:231–236.

    Article  CAS  PubMed  Google Scholar 

  57. Trappe R, Laccone F, Cobilanschi J, et al. MECP2 mutations in sporadic cases of Rett syndrome are almost exclusively of paternal origin. Am J Hum Genet. 2001;68:1093–1101.

    Article  CAS  PubMed  Google Scholar 

  58. Böhm J, Munk-Schulenburg S, Felscher S, Kohlhase J. SALL1 mutations in sporadic Townes-Brocks syndrome are of predominantly paternal origin without obvious paternal age effect. Am J Med Genet A. 2006;140:1904–1908.

    PubMed  Google Scholar 

  59. Roberts PS, Chung J, Jozwiak S, et al. SNP identification, haplotype analysis, and parental origin of mutations in TSC2. Hum Genet. 2002;111:96–101.

    Article  CAS  PubMed  Google Scholar 

  60. Richards FM, Payne SJ, Zbar B, Affara NA, Ferguson-Smith MA, Maher ER, Molecular analysis of de novo germline mutations in the von Hippel-Lindau disease gene. Hum Mol Genet. 1995;4:2139–2143.

    Article  CAS  PubMed  Google Scholar 

  61. Deleuze JF, Hazan J, Dhorne S, Weissenbach J, Hadchouel M. Mapping of microsatellite markers in the Alagille region and screening of microdeletions by genotyping 23 patients. Eur J Hum Genet. 1994;2(3):185–190.

    CAS  PubMed  Google Scholar 

  62. Horsthemke B, Greger V, Barnert HJ, Hopping W, Passarge E. Detection of submicroscopic deletions and a DNA polymorphism at the retinoblastoma locus. Hum Genet. 1987;76:257–261.

    Article  CAS  PubMed  Google Scholar 

  63. Ejima Y, Sasaki MS, Kaneko A, Tanooka H. Types, rates, origin and expressivity of chromosome mutations involving 13q14 in retinoblastoma patients. Hum Genet. 1988;79:118–123.

    Article  CAS  PubMed  Google Scholar 

  64. Dryja TP, Mukai S, Petersen R, Rapaport JM, Walton D, Yandell DW. Parental origin of mutations of the retinoblastoma gene. Nature. 1989;339:556–558.

    Article  CAS  PubMed  Google Scholar 

  65. Zhu XP, Dunn JM, Phillips RA. et al. Preferential germline mutation of the paternal allele in retinoblastoma. Nature. 1989;340:312–313.

    Article  CAS  PubMed  Google Scholar 

  66. Petek E, Windpassinger C, Mach M, et al. Molecular characterization of a 12q22-q24 deletion associated with congenital deafness: confirmation and refinement of the DFNA25 locus. Am J Med Genet A. 2003;117:122–126.

    Google Scholar 

  67. Overhauser J, McMahon J, Oberlender S, et al. Parental origin of chromosome 5 deletions in the cri-du-chat syndrome. Am J Med Genet. 1990;37:83–86.

    Article  CAS  PubMed  Google Scholar 

  68. Church DM, Bengtsson U, Nielsen KV, Wasmuth JJ, Niebuhr E. Molecular definition of deletions of different segments of distal 5p that result in distinct phenotypic features. Am J Hum Genet. 1995;56:1162–1172.

    CAS  PubMed  Google Scholar 

  69. Mainardi PC, Perfumo C, Cali A, et al. Clinical and molecular characterisation of 80 patients with 5p deletion: genotype-phenotype correlation. J Med Genet. 2001;38:151–158.

    Article  CAS  PubMed  Google Scholar 

  70. Shapira SK, McCaskill C, Northrup H, et al. Chromosome 1p36 deletions: the clinical phenotype and molecular characterization of a common newly delineated syndrome. Am J Hum Genet. 1997;61:642–650.

    Article  CAS  PubMed  Google Scholar 

  71. Heilstedt HA, Ballif BC, Howard LA, et al. Physical map of 1p36, placement of breakpoints in monosomy 1p36, and clinical characterization of the syndrome. Am J Hum Genet. 2003;72:1200–1212.

    Article  CAS  PubMed  Google Scholar 

  72. Petek E, Windpassinger C, Simma B, Mueller T, Wagner K, Kroisel PM. Molecular characterisation of a 15 Mb constitutional de novo interstitial deletion of chromosome 3p in a boy with developmental delay and congenital anomalies. J Hum Genet. 2003;48:283–287.

    PubMed  Google Scholar 

  73. Micale MA, Haren JM, Conroy JM, Crowe CA, Schwartz S. Parental origin of De Novo chromosome 9 deletions in del(9p) syndrome. Am J Med Genet. 1995;57:79–81.

    Article  CAS  PubMed  Google Scholar 

  74. Olivieri C, Maraschio P, Caselli D, et al. Interstitial deletion of chromosome 9, int del(9)(9q22.31–q31.2), including the genes causing multiple basal cell nevus syndrome and Robinow/brachydactyly 1 syndrome. Eur J Pediatr. 2003;162:100–103.

    PubMed  Google Scholar 

  75. Hreidarsson SJ, Stamberg J. Distal monosomy 14 not associated with ring formation. J Med Genet. 1983;20:147–149.

    Article  CAS  PubMed  Google Scholar 

  76. Telford N, Thomson DA, Griffiths MJ, Ilett S, Watt JL. Terminal deletion (14)(q32.3): a new case. J Med Genet. 1990;27:261–263.

    Article  CAS  PubMed  Google Scholar 

  77. Elliott J, Maltby EL, Reynolds B, A case of deletion 14(q22.1→q22.3) associated with anophthalmia and pituitary abnormalities. J Med Genet. 1993;30:251–252.

    Article  CAS  PubMed  Google Scholar 

  78. Shapira SK, Anderson KL, Orr-Urtregar A, Craigen WJ, Lupski JR, Shaffer LG. De novo proximal interstitial deletions of 14q: cytogenetic and molecular investigations. Am J Med Genet. 1994;52:44–50.

    Article  CAS  PubMed  Google Scholar 

  79. Byth BC, Costa MT, Teshima IE, Wilson WG, Carter NP, Cox DW. Molecular analysis of three patients with interstitial deletions of chromosome band 14q31. J Med Genet. 1995;32:564–567.

    Article  CAS  PubMed  Google Scholar 

  80. Petek E, Plecko-Startinig B, Windpassinger C, Egger H, Wagner K, Kroisel PM. Molecular characterisation of a 3.5 Mb interstitial 14q deletion in a child with several phenotypic anomalies. J Med Genet. 2003;40:e47.

    Article  CAS  PubMed  Google Scholar 

  81. Demczuk S, Levy A, Aubry M, et al. Excess of deletions of maternal origin in the DiGeorge/velo-cardio-facial syndromes. A study of 22 new patients and review of the literature. Hum Genet. 1995;96:9–13.

    Article  CAS  PubMed  Google Scholar 

  82. Morrow B, Goldberg R, Carlson C, et al. Molecular definition of the 22q11 deletions in velo-cardio-facial syndrome. Am J Hum Genet. 1995;56:1391–1403.

    CAS  PubMed  Google Scholar 

  83. Ryan AK, Goodship JA, Wilson DI, et al. Spectrum of clinical features associated with interstitial chromosome 22q11 deletions: a European collaborative study. J Med Genet. 1997;34:798–804.

    Article  CAS  PubMed  Google Scholar 

  84. Fokstuen S, Arbenz U, Artan S, et al. 22q11.2 deletions in a series of patients with non-selective congenital heart defects: incidence, type of defects and parental origin. Clin Genet. 1998;53:63–69.

    Article  CAS  PubMed  Google Scholar 

  85. Matsuoka R, Kimura M, Scambler PJ, et al. Molecular and clinical study of 183 patients with conotruncal anomaly face syndrome. Hum Genet. 1998;103:70–80.

    Article  CAS  PubMed  Google Scholar 

  86. Lu JH, Chung MY, Hwang B, Chien HP. Prevalence and parental origin in Tetralogy of Fallot associated with chromosome 22q11 microdeletion. Pediatrics. 1999;104:87–90.

    Article  CAS  PubMed  Google Scholar 

  87. Chung MY, Lu JH, Chien HP, Hwang B. Chromosome 22q11 microdeletion in conotruncal heart defects: clinical presentation, parental origin and de novo mutations. Int J Mol Med. 2001;7:501–505.

    CAS  PubMed  Google Scholar 

  88. Eliez S, Antonarakis SE, Morris MA, Dahoun SP, Reiss AL. Parental origin of the deletion 22q11.2 and brain development in velocardiofacial syndrome: a preliminary study. Arch Gen Psychiatry. 2001;58:64–68.

    Article  CAS  PubMed  Google Scholar 

  89. Saitta SC, Harris SE, McDonald-McGinn DM, et al. Independent de novo 22q11.2 deletions in first cousins with DiGeorge/velocardiofacial syndrome. Am J Med Genet A. 2004;124:313–317.

    Article  Google Scholar 

  90. Bakker E, Veenema H, Den Dunnen JT, et al. Germinal mosaicism increases the recurrence risk for 'new' Duchenne muscular dystrophy mutations. J Med Genet. 1989;26:553–559.

    Article  CAS  PubMed  Google Scholar 

  91. Chen CP, Lin SP, Wang TH, Chen YJ, Chen M, Wang W. Perinatal findings and molecular cytogenetic analyses of de novo interstitial deletion of 9q (9q22.3→q31.3) associated with Gorlin syndrome. Prenat Diagn. 2006;26:725–729.

    Article  CAS  PubMed  Google Scholar 

  92. Youssoufian H, Kasper CK, Phillips DG, Kazazian HH, Antonarakis SE. Restriction endonuclease mapping of six novel deletions of the factor VIII gene in hemophilia A. Hum Genet. 1988;80:143–148.

    Article  CAS  PubMed  Google Scholar 

  93. Green PM, Saad S, Lewis CM, Giannelli F. Mutation rates in humans. I. Overall and sex-specific rates obtained from a population study of hemophilia B. Am J Hum Genet. 1999;65:1572–1579.

    Article  CAS  PubMed  Google Scholar 

  94. LeGuern E, Gouider R, Ravisé N, et al. A de novo case of hereditary neuropathy with liability to pressure palsies (HNPP) of maternal origin: a new mechanism for deletion in 17p11.2? Hum Mol Genet. 1996;5:103–106.

    Article  CAS  PubMed  Google Scholar 

  95. Ludecke HJ, Burdiek R, Senger G, Claussen U, Passarge E, Horsthemke B. Maternal origin of a de novo chromosome 8 deletion in a patient with Langer-Giedion syndrome. Hum. Genet. 1989;82:327–329.

    Article  CAS  PubMed  Google Scholar 

  96. Lopes J, Ravisé N, Vandenberghe A, et al. Fine mapping of de novo CMT1A and HNPP rearrangements within CMT1A-REPs evidences two distinct sex-dependent mechanisms and candidate sequences involved in recombination.Hum Mol Genet. 1998;7:141–148.

    Article  CAS  PubMed  Google Scholar 

  97. Schwartz CE, Johnson JP, Holycross B, et al. Detection of submicroscopic deletions in band 17p13 in patients with the Miller-Dieker syndrome. Am J Hum Genet. 1988;43:597–604.

    CAS  PubMed  Google Scholar 

  98. van Tuinen P, Dobyns WB, Rich DC, et al. Molecular detection of microscopic and submicroscopic deletions associated with Miller-Dieker syndrome. Am J Hum Genet. 1988;43:587–596.

    Google Scholar 

  99. Kayes LM, Burke W, Riccardi VM, et al. Deletions spanning the neurofibromatosis 1 gene: identification and phenotype of five patients. Am J Hum Genet. 1994;54:424–436.

    CAS  PubMed  Google Scholar 

  100. Upadhyaya M, Maynard J, Osborn M, et al. Characterisation of germline mutations in the neurofibromatosis type 1 (NF1) gene. J Med Genet. 1995;32:706–710.

    Article  CAS  PubMed  Google Scholar 

  101. Upadhyaya M, Ruggieri M, Maynard J, et al. Gross deletions of the neurofibromatosis type 1 (NF1) gene are predominantly of maternal origin and commonly associated with a learning disability, dysmorphic features and developmental delay. Hum Genet. 1998;102:591–597.

    Article  CAS  PubMed  Google Scholar 

  102. Lopez Correa C, Brems H, Lazaro C, et al. Molecular studies in 20 submicroscopic neurofibromatosis type 1 gene deletions. Hum Mutat. 1999;14:387–393.

    Article  CAS  PubMed  Google Scholar 

  103. Lopez Correa C, Brems H, Lazaro C, Marynen P, Legius E. Unequal meiotic crossover: a frequent cause of NF1 microdeletions. Am J Hum Genet. 2000;66:1969–1974.

    Article  CAS  PubMed  Google Scholar 

  104. Pescucci C, Meloni I, Bruttini M, et al. Chromosome 2 deletion encompassing the MAP2 gene in a patient with autism and Rett-like features. Clin Genet. 2003;64:497–501.

    Article  CAS  PubMed  Google Scholar 

  105. Azevedo L, Soares PA, Quental R, et al. Mutational spectrum and linkage disequilibrium patterns at the ornithine transcarbamylase gene (OTC).Ann Hum Genet. 2006;70:797–801.

    Article  CAS  PubMed  Google Scholar 

  106. Madia FStriano P, Gennaro E, et al. Cryptic chromosome deletions involving SCN1A in severe myoclonic epilepsy of infancy. Neurology. 2006;10;67:1230–1235.

    Article  CAS  Google Scholar 

  107. Miyake N, Kurotaki N, Sugawara H, et al. Preferential paternal origin of microdeletions caused by prezygotic chromosome or chromatid rearrangements in Sotos syndrome. Am J Hum Genet. 2003;72:1331–1337.

    Article  CAS  PubMed  Google Scholar 

  108. Nardmann J, Tranebjaerg L, Horsthemke B, Ludecke HJ. The tricho-rhino-phalangeal syndromes: frequency and parental origin of 8q deletions. Hum Genet. 1997;99:638–643.

    Article  CAS  PubMed  Google Scholar 

  109. Wang MS, Schinzel A, Kotzot D, et al. Molecular and clinical correlation study of Williams-Beuren syndrome: No evidence of molecular factors in the deletion region or imprinting affecting clinical outcome. Am J Med Genet. 1999;86:34–43.

    Article  CAS  PubMed  Google Scholar 

  110. Wieczorek D, Krause M, Majewski F, et al. Unexpected high frequency of de novo unbalanced translocations in patients with Wolf-Hirschhorn syndrome (WHS). J Med Genet. 2000;37:798–804.

    Article  CAS  PubMed  Google Scholar 

  111. Driscoll MC, Dobkin CS, Alter BP. Gamma delta beta-thalassemia due to a de novo mutation deleting the 5' beta-globin gene activation-region hypersensitive sites. Proc Natl Acad Sci U S A. 1989;86:7470–7474.

    Article  CAS  PubMed  Google Scholar 

  112. Chehab FF, Winterhalter KH, Kan YW. Characterization of a spontaneous mutation in beta-thalassemia associated with advanced paternal age. Blood. 1989;74:852–854.

    CAS  PubMed  Google Scholar 

  113. Ripa R, Bisgaard ML, Bülow S, Nielsen FC. De novo mutations in familial adenomatous polyposis (FAP). Eur J Hum Genet. 2002;10:631–637.

    Article  CAS  PubMed  Google Scholar 

  114. Delatycki MB, Danks A, Churchyard A, Zhou XP, Eng C. De novo germline PTEN mutation in a man with Lhermitte-Duclos disease which arose on the paternal chromosome and was transmitted to his child with polydactyly and Wormian bones. J Med Genet. 200340:e92.

    Article  CAS  PubMed  Google Scholar 

  115. Lastella P, Sabbà C, Lenato GM, et al. Endoglin gene mutations and polymorphisms in Italian patients with hereditary haemorrhagic telangiectasia. Clin Genet. 2003;63:536–540.

    Article  CAS  PubMed  Google Scholar 

  116. Splendore A, Jabs EW, Félix TM, Passos-Bueno MR. Parental origin of mutations in sporadic cases of Treacher Collins syndrome. Eur J Hum Genet. 2003;11:718–722.

    Article  CAS  PubMed  Google Scholar 

  117. Antonarakis SE, Krawczak M, Cooper DN. Disease causing mutations in the human genome. Eur J Pediatr. 2000;159:S173–S178.

    Article  CAS  PubMed  Google Scholar 

  118. Penrose LS. Parental age in achondroplasia and mongolism. Am J Hum Genet. 1957;9:167–169.

    CAS  PubMed  Google Scholar 

  119. Chen CP, Chern SR, Tsai FJ. A comparison of maternal age, sex ratio and associated major anomalies among fetal trisomy 18 cases with different cell division of error. Prenat diagn. 2005;25:327–330.

    Article  PubMed  Google Scholar 

Mechanisms of Mutation

  1. Haldane JBS. The rate of spontaneous mutation of a human gene. J Genet. 1935;31:317–326.

    Article  Google Scholar 

  2. Li WH, Yi S, Makova K. Male-driven evolution. Curr Opin Genet Dev. 2002;12:650–656.

    Article  CAS  PubMed  Google Scholar 

  3. Thomas GH. High male:female ratio of germ-line mutations: an alternative explanation for postulated gestational lethality in males in X-linked dominant disorders. Am J Hum Genet. 1996;58:1364–1368.

    CAS  PubMed  Google Scholar 

  4. Monk M, Boubelik M, Lehnert S. Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development. 1987;99:371–382.

    CAS  PubMed  Google Scholar 

  5. Driscoll DJ, Migeon BR. Sex difference in methylation of single-copy genes in human meiotic germ cells: implications for X chromosome inactivation, parental imprinting, and origin of CpG mutations. Somatic Cell Mol Genet. 1990;16:267–282.

    Article  CAS  Google Scholar 

  6. D'Apice MR, Tenconi R, Mammi I, van den Ende J, Novelli G. Paternal origin of LMNA mutations in Hutchinson-Gilford progeria. Clin Genet. 2004;65:52–54.

    Article  PubMed  Google Scholar 

  7. Tiemann-Boege I, Navidi W, Grewal R, et al. The observed human sperm mutation frequency cannot explain the achondroplasia paternal age effect. Proc Natl Acad Sci. USA. 2002;99:14952–14957.

    Article  CAS  PubMed  Google Scholar 

  8. Cooper DN, Krawczak M, Antonarakis SE. The nature and mechanisms of human gene mutation. In: Scriver CS, Beaudet AL, Sly WS, Valle D, eds. The Metabolic and Molecular Basis of Inherited Disease, 7th ed. New York: McGraw-Hill, 1995:65–94.

    Google Scholar 

Challenging Penrose’s Copy Error Hypothesis

  1. Glaser RL, Broman KW, Schulman RL, Eskenazi B, Wyrobek AJ, Jabs EW. The paternal age effect in Apert syndrome is due, in part, to the increased frequency of mutations in sperm. Am J Hum Genet. 2003;73:939–947.

    Article  CAS  PubMed  Google Scholar 

  2. Goriely A, McVean GAT, Röjmyr M, Ingemarsson B, Wilkie AOM. Evidence for selective advantage of pathogenic mutations in the male germline. Science. 2003;301:643–646.

    Article  CAS  PubMed  Google Scholar 

  3. Wyrobek AJ, Eskenazi B, Young S, et al. Advancing age has differential effects on DNA damage, chromatin integrity, gene mutations, and aneuploidies in sperm. Proc Natl Acad Sci. USA. 2006;103:9601–9606.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rivka L. Glaser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Glaser, R.L., Morison, I.M. (2009). Equality of the Sexes? Parent-of-Origin Effects on Transcription and de novo Mutations. In: Krawetz, S. (eds) Bioinformatics for Systems Biology. Humana Press. https://doi.org/10.1007/978-1-59745-440-7_26

Download citation

Publish with us

Policies and ethics