Skip to main content

Breaking Self-Tolerance to Tumor-Associated Antigens by In Vivo Manipulation of Dendritic Cells

  • Protocol
Immunological Tolerance

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 380))

Abstract

Dendritic cells (DC) are extremely potent antigen-presenting cells, which can prime both naïve CD4+ and CD8+ T lymphocytes. In their immature state, DC continuously sample and process antigens from the surrounding environment, but only mature DC express sufficient levels of costimulatory molecules to activate naïve T cells. DC present in tumors are functionally immature owing to the immunosuppressive actions of tumor-derived factors and regulatory T cells, and such immature DC promote immune tolerance to the tumor. Recent studies from animal models suggest that Toll-like receptor (TLR) agonists such as CpG can reverse the tolerogenic state of tumoral DC. Strategies that allow DC to gain access to both tumor antigens and TLR agonists, in situ, can overcome tumor tolerance leading to the induction of potent systemic antitumor immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banchereau, J. and Steinman, R. M. (1998) Dendritic cells and the control of immunity. Nature 392, 245–252.

    Article  PubMed  CAS  Google Scholar 

  2. Banchereau, J., Briere, F., Caux, C., et al. (2000) Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767–811.

    Article  PubMed  CAS  Google Scholar 

  3. Gabrilovich, D., Ishida, T., Oyama, T., et al. (1998) Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92, 4150–4166.

    PubMed  CAS  Google Scholar 

  4. Bell, D., Chomarat, P., Broyles, D., et al. (1999) In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas. J. Exp. Med. 190, 1417–1426.

    Article  PubMed  CAS  Google Scholar 

  5. Vermi, W., Bonecchi, R., Facchetti, F., et al. (2003) Recruitment of immature plasmacytoid dendritic cells (plasmacytoid monocytes) and myeloid dendritic cells in primary cutaneous melanomas. J. Pathol. 200, 255–268.

    Article  PubMed  Google Scholar 

  6. Engleman, E. G., Brody, J., and Soares, L. (2004) Using signaling pathways to overcome immune tolerance to tumors. Sci. STKE 2004, 28.

    Article  Google Scholar 

  7. Zou, W. (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat. Rev. Cancer 5, 263–274.

    Article  PubMed  CAS  Google Scholar 

  8. Pasare, C. and Medzhitov, R. (2003) Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299, 1033–1036.

    Article  PubMed  CAS  Google Scholar 

  9. Yang, Y., Huang, C. T., Huang, X., and Pardoll, D. M. (2004) Persistent Toll-like receptor signals are required for reversal of regulatory T cell-mediated CD8 tolerance. Nat. Immunol. 5, 508–515.

    Article  PubMed  CAS  Google Scholar 

  10. Medzhitov, R. (2001) Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1, 135–145.

    Article  PubMed  CAS  Google Scholar 

  11. Hsu, F. J., Benike, C., Fagnoni, F., et al. (1996) Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat. Med. 2, 52–58.

    Article  PubMed  CAS  Google Scholar 

  12. Nestle, F. O., Alijagic, S., Gilliet, M., et al. (1998) Vaccination of melanoma patients with peptideor tumor lysate-pulsed dendritic cells. Nat. Med. 4, 328–332.

    Article  PubMed  CAS  Google Scholar 

  13. Fong, L., Hou, Y., Rivas, A., et al. (2001) Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc. Natl. Acad. Sci. USA 98, 8809–8814.

    Article  PubMed  CAS  Google Scholar 

  14. Fong, L. and Engleman, E. G. (2000) Dendritic cells in cancer immunotherapy. Annu. Rev. Immunol. 18, 245–273.

    Article  PubMed  CAS  Google Scholar 

  15. Merad, M., Sugie, T., Engleman, E. G., and Fong, L. (2002) In vivo manipulation of dendritic cells to induce therapeutic immunity. Blood 99, 1676–1682.

    Article  PubMed  CAS  Google Scholar 

  16. Furumoto, K., Soares, L., Engleman, E. G., and Merad, M. (2004) Induction of potent antitumor immunity by in situ targeting of intratumoral DCs. J. Clin. Invest. 113, 774–783.

    PubMed  CAS  Google Scholar 

  17. Okano, F., Merad, M., Furumoto, K., and Engleman, E. G. (2005) In vivo manipulation of dendritic cells overcomes tolerance to unmodified tumor-associated self antigens and induces potent antitumor immunity. J. Immunol. 174, 2645–2652.

    PubMed  CAS  Google Scholar 

  18. Maraskovsky, E., Brasel, K., Teepe, M., et al. (1996) Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J. Exp. Med. 184, 1953–1962.

    Article  PubMed  CAS  Google Scholar 

  19. Gilboa, E. (1999) The makings of a tumor rejection antigen. Immunity 11, 263–270.

    Article  PubMed  CAS  Google Scholar 

  20. Krieg, A. M. (2002) CpG motifs in bacterial DNA and their immune effects. Annu. Rev. Immunol. 20, 709–760.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Mende, I., Engleman, E.G. (2007). Breaking Self-Tolerance to Tumor-Associated Antigens by In Vivo Manipulation of Dendritic Cells. In: Fairchild, P.J. (eds) Immunological Tolerance. Methods in Molecular Biology™, vol 380. Humana Press. https://doi.org/10.1007/978-1-59745-395-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-395-0_29

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-652-8

  • Online ISBN: 978-1-59745-395-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics