Skip to main content

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Nowadays, molecules that affect microtubule functions, the so-called Microtubule-Damaging Agents (MDAs), constitute a class of anti-cancer drugs largely used in the clinics. Interest for MDAs is accompanied with advances in the fundamental understanding of their mechanism of action, including tumor cell death induction. MDAs have shown a high ability to induce apoptosis, programmed and tightly regulated cell death that is not or insufficiently activated in cancer cells. Here, the major intracellular signaling cascades responsible for apoptosis are first reviewed, focusing on the mitochondrial pathway. Then, the molecular and cellular mechanisms involved in the pro-apoptotic activity of MDAs are precised. Especially, the modulation of Bcl-2 family members that triggers mitochondrial membrane permeabilization is described, as well as the release of pro-apoptotic factors from the intermembrane space, and the final activation of caspases that leads to the biochemical destruction of the cell. Since MDAs inhibit microtubule functions and generally perturbate cell cycle progression, microtubule-linked proteins and cell-cycle progression regulators are proposed as candidates to control the apoptotic machinery. Other factors, such as MAPKs, stress markers, and survival factors, are also reviewed as modulators of the cell survival/death balance. Lastly, the direct effects of MDAs on mitochondria and the possible involvement of the tubulin/microtubule system in this phenomenon are discussed. Altogether, these data highlight the crucial role played by mitochondria in MDA-induced apoptosis, and propose that mitochondria should be investigated as a target of choice to improve cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972;26:239–257.

    PubMed  CAS  Google Scholar 

  2. Conradt B, Horvitz HR. The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell 1998;93:519–529.

    PubMed  CAS  Google Scholar 

  3. Stergiou L, Hengartner MO. Death and more: DNA damage response pathways in the nematode C. elegans. Cell Death Differ 2004;11:21–28.

    PubMed  CAS  Google Scholar 

  4. Wyllie AH. Apoptosis and the regulation of cell numbers in normal and neoplastic tissues: an overview. Cancer Metastasis Rev 1992;11:95–103.

    PubMed  CAS  Google Scholar 

  5. Meier P, Finch A, Evan G. Apoptosis in development. Nature 2000;407:796–801.

    PubMed  CAS  Google Scholar 

  6. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995;267:1456–1462.

    PubMed  CAS  Google Scholar 

  7. Martin SJ, Green DR. Apoptosis and cancer: the failure of controls on cell death and cell survival. Crit Rev Oncol Hematol 1995;18:137–153.

    PubMed  CAS  Google Scholar 

  8. Cutts JH, Beer CT, Noble RL. Biological properties of Vincaleukoblastine, an alkaloid in Vinca rosea Linn, with reference to its antitumor action. Cancer Res 1960;20:1023–1031.

    PubMed  CAS  Google Scholar 

  9. Jordan MA, Thrower D, Wilson L. Mechanism of inhibition of cell proliferation by Vinca alkaloids. Cancer Res 1991;51:2212–2222.

    PubMed  CAS  Google Scholar 

  10. Schiff PB, Fant J, Horwitz SB. Promotion of microtubule assembly in vitro by taxol. Nature 1979; 277:665–667.

    PubMed  CAS  Google Scholar 

  11. Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer 2004;4: 253–265.

    PubMed  CAS  Google Scholar 

  12. Honore S, Pasquier E, Braguer D. Understanding microtubule dynamics for improved cancer therapy. Cell Mol Life Sci 2005;62:3039–3056.

    PubMed  CAS  Google Scholar 

  13. Wang TH, Wang HS, Soong YK. Paclitaxel-induced cell death: where the cell cycle and apoptosis come together. Cancer 2000;88:2619–2628.

    PubMed  CAS  Google Scholar 

  14. Vilpo JA, Koski T, Vilpo LM. Selective toxicity of vincristine against chronic lymphocytic leukemia cells in vitro. Eur J Haematol 2000;65:370–378.

    PubMed  CAS  Google Scholar 

  15. Torres K, Horwitz SB. Mechanisms of Taxol-induced cell death are concentration dependent. Cancer Res 1998;58:3620–3626.

    PubMed  CAS  Google Scholar 

  16. Giannakakou P, Robey R, Fojo T, Blagosklonny MV. Low concentrations of paclitaxel induce cell type-dependent p53, p21 and G1/G2 arrest instead of mitotic arrest: molecular determinants of paclitaxel-induced cytotoxicity. Oncogene 2001;20:3806–3813.

    PubMed  CAS  Google Scholar 

  17. Blajeski AL, Phan VA, Kottke TJ, Kaufmann SH. G(1) and G(2) cell-cycle arrest following microtubule depolymerization in human breast cancer cells. J Clin Invest 2002;110:91–99.

    PubMed  CAS  Google Scholar 

  18. Carles G, Braguer D, Dumontet C, et al. Differentiation of human colon cancer cells changes the expression of beta-tubulin isotypes and MAPs. Br J Cancer 1999;80:1162–1168.

    PubMed  CAS  Google Scholar 

  19. Finkel E. The mitochondrion: is it central to apoptosis? Science 2001;292:624–626.

    PubMed  CAS  Google Scholar 

  20. Strasser A. Life and death during lymphocyte development and function: evidence for two distinct killing mechanisms. Curr Opin Immunol 1995;7:228–234.

    PubMed  CAS  Google Scholar 

  21. Lawen A. Apoptosis-an introduction. Bioessays 2003;25:888–896.

    PubMed  CAS  Google Scholar 

  22. Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 2001;104:487–501.

    PubMed  CAS  Google Scholar 

  23. Boldin MP, Goncharov TM, Goltsev YV, Wallach D. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1-and TNF receptor-induced cell death. Cell 1996;85:803–815.

    PubMed  CAS  Google Scholar 

  24. Muzio M, Chinnaiyan AM, Kischkel FC, et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death — inducing signaling complex. Cell 1996;85: 817–827.

    PubMed  CAS  Google Scholar 

  25. Medema JP, Scaffidi C, Kischkel FC, et al. FLICE is activated by association with the CD95 deathinducing signaling complex (DISC). Embo J 1997;16:2794–2804.

    PubMed  CAS  Google Scholar 

  26. Scaffidi C, Fulda S, Srinivasan A, et al. Two CD95 (APO-1/Fas) signaling pathways. Embo J 1998; 17:1675–1687.

    PubMed  CAS  Google Scholar 

  27. Huang DC, Hahne M, Schroeter M, et al. Activation of Fas by FasL induces apoptosis by a mechanism that cannot be blocked by Bcl-2 or Bcl-x(L). Proc Natl Acad Sci USA 1999;96:14,871–14,876.

    PubMed  CAS  Google Scholar 

  28. Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998;94:491–501.

    PubMed  CAS  Google Scholar 

  29. Green DR, Ferguson TA. The role of Fas ligand in immune privilege. Nat Rev Mol Cell Biol 2001;2:917–924.

    PubMed  CAS  Google Scholar 

  30. Fulda S, Susin SA, Kroemer G, Debatin KM. Molecular ordering of apoptosis induced by anticancer drugs in neuroblastoma cells. Cancer Res 1998;58:4453–4460.

    PubMed  CAS  Google Scholar 

  31. Goncalves A, Braguer D, Carles G, Andre N, Prevot C, Briand C. Caspase-8 activation independent of CD95/CD95-L interaction during paclitaxel-induced apoptosis in human colon cancer cells (HT29-D4). Biochem Pharmacol 2000;60:1579–1584.

    PubMed  CAS  Google Scholar 

  32. Ferreira CG, Tolis C, Span SW, et al. Drug-induced apoptosis in lung cnacer cells is not mediated by the Fas/FasL (CD95/APO1) signaling pathway. Clin Cancer Res 2000;6:203–212.

    PubMed  CAS  Google Scholar 

  33. Wieder T, Essmann F, Prokop A, et al. Activation of caspase-8 in drug-induced apoptosis of B-lymphoid cells is independent of CD95/Fas receptor-ligand interaction and occurs downstream of caspase-3. Blood 2001;97:1378–1387.

    PubMed  CAS  Google Scholar 

  34. von Haefen C, Wieder T, Essmann F, Schulze-Osthoff K, Dorken B, Daniel PT. Paclitaxel-induced apoptosis in BJAB cells proceeds via a death receptor-independent, caspases-3/-8-driven mitochondrial amplification loop. Oncogene 2003;22:2236–2247.

    Google Scholar 

  35. Pucci B, Bellincampi L, Tafani M, Masciullo V, Melino G, Giordano A. Paclitaxel induces apoptosis in Saos-2 cells with CD95L upregulation and Bcl-2 phosphorylation. Exp Cell Res 1999;252: 134–143.

    PubMed  CAS  Google Scholar 

  36. Kim R, Tanabe K, Emi M, Uchida Y, Toge T. Death receptor-dependent and-independent pathways in anticancer drug-induced apoptosis of breast cancer cells. Oncol Rep 2003;10:1925–1930.

    PubMed  CAS  Google Scholar 

  37. Adams JM, Cory S. Life-or-death decisions by the Bcl-2 protein family. Trends Biochem Sci 2001; 26:61–66.

    PubMed  CAS  Google Scholar 

  38. Borner C. The Bcl-2 protein family: sensors and checkpoints for life-or-death decisions. Mol Immunol 2003;39:615–647.

    PubMed  CAS  Google Scholar 

  39. Suzuki M, Youle RJ, Tjandra N. Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 2000;103:645–654.

    PubMed  CAS  Google Scholar 

  40. Ibrado AM, Liu L, Bhalla K. Bcl-xL overexpression inhibits progression of molecular events leading to paclitaxel-induced apoptosis of human acute myeloid leukemia HL-60 cells. Cancer Res 1997;57:1109–1115.

    PubMed  CAS  Google Scholar 

  41. Reed JC. Bcl-2 family proteins. Oncogene 1998;17:3225–3236.

    PubMed  Google Scholar 

  42. Haldar S, Basu A, Croce CM. Bcl2 is the guardian of microtubule integrity. Cancer Res 1997;57: 229–233.

    PubMed  CAS  Google Scholar 

  43. Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 2003;4:552–565.

    PubMed  CAS  Google Scholar 

  44. Priault M, Cartron PF, Camougrand N, Antonsson B, Vallette FM, Manon S. Investigation of the role of the C-terminus of Bax and of tc-Bid on Bax interaction with yeast mitochondria. Cell Death Differ 2003; 10:1068–1077.

    PubMed  CAS  Google Scholar 

  45. Griffiths GJ, Corfe BM, Savory P, et al. Cellular damage signals promote sequential changes at the N-terminus and BH-1 domain of the pro-apoptotic protein Bak. Oncogene 2001;20:7668–7676.

    PubMed  CAS  Google Scholar 

  46. Cartron PF, Priault M, Oliver L, Meflah K, Manon S, Vallette FM. The N-terminal end of Bax contains a mitochondrial-targeting signal. J Biol Chem 2003;278:11,633–11,641.

    PubMed  CAS  Google Scholar 

  47. Ohtsuka T, Ryu H, Minamishima YA, et al. ASC is a Bax adaptor and regulates the p53-Bax mitochondrial apoptosis pathway. Nat Cell Biol 2004;6:121–128.

    PubMed  CAS  Google Scholar 

  48. Desagher S, Martinou JC. Mitochondria as the central control point of apoptosis. Trends Cell Biol 2000; 10:369–377.

    PubMed  CAS  Google Scholar 

  49. Heimlich G, McKinnon AD, Bernardo K, et al. Bax-induced cytochrome c release from mitochondria depends on alpha-helices-5 and-6. Biochem J 2004;378:247–255.

    PubMed  CAS  Google Scholar 

  50. Mikhailov V, Mikhailova M, Pulkrabek DJ, Dong Z, Venkatachalam MA, Saikumar P. Bcl-2 prevents Bax oligomerization in the mitochondrial outer membrane. J Biol Chem 2001;276:18,361–18,374.

    PubMed  CAS  Google Scholar 

  51. Wang HG, Rapp UR, Reed JC. Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell 1996;87:629–638.

    PubMed  CAS  Google Scholar 

  52. Datta SR, Dudek H, Tao X, et al. Akt phosphorylation of BAD couples survival signals to the cellintrinsic death machinery. Cell 1997;91:231–241.

    PubMed  CAS  Google Scholar 

  53. Harada H, Beckneil B, Wilm M, et al. Phosphorylation and inactivation of BAD by mitochondriaanchored protein kinase A. Mol Cell 1999;3:413–422.

    PubMed  CAS  Google Scholar 

  54. Zha J, Harada H, Yang E, Jockei J, Korsmeyer SJ. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 1996;87:619–628.

    PubMed  CAS  Google Scholar 

  55. Verma S, Zhao LJ, Chinnadurai G. Phosphorylation of the pro-apoptotic protein BIK: mapping of phosphorylation sites and effect on apoptosis. J Biol Chem 2001;276:4671–4676.

    PubMed  CAS  Google Scholar 

  56. Zha J, Weiler S, Oh KJ, Wei MC, Korsmeyer SJ. Posttranslational N-myristoylation of BID as a molecular switch for targeting mitochondria and apoptosis. Science 2000;290:1761–1765.

    PubMed  CAS  Google Scholar 

  57. Puthalakath H, Huang DC, O’Reilly LA, King SM, Strasser A. The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol Cell 1999;3:287–296.

    PubMed  CAS  Google Scholar 

  58. Puthalakath H, Villunger A, O’Reilly LA, et al. Bmf: a proapoptotic BH3-only protein regulated by interaction with the myosin V actin motor complex, activated by anoikis. Science 2001;293:1829–1832.

    PubMed  CAS  Google Scholar 

  59. Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 1993;74:609–619.

    PubMed  CAS  Google Scholar 

  60. Sattler M, Liang H, Nettesheim D, et al. Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science 1997;275:983–986.

    PubMed  CAS  Google Scholar 

  61. Willis SN, Adams JM. Life in the balance: how BH3-only proteins induce apoptosis. Curr Opin Cell Biol 2005;17:617–625.

    PubMed  CAS  Google Scholar 

  62. Zong WX, Lindsten T, Ross AJ, MacGregor GR, Thompson CB. BH3-only proteins that bind prosurvival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev 2001;15:1481–1486.

    PubMed  CAS  Google Scholar 

  63. Kaufmann T, Schinzel A, Borner C. Bcl-w(edding) with mitochondria. Trends Cell Biol 2004;14: 8–12.

    PubMed  CAS  Google Scholar 

  64. Wilson-Annan J, O’Reilly LA, Crawford SA, et al. Proapoptotic BH3-only proteins trigger membrane integration of prosurvival Bcl-w and neutralize its activity. J Cell Biol 2003;162:877–887.

    PubMed  CAS  Google Scholar 

  65. Liu FT, Newland AC, Jia L. Bax conformational change is a crucial step for PUMA-mediated apoptosis in human leukemia. Biochem Biophys Res Commun 2003;310:956–962.

    PubMed  CAS  Google Scholar 

  66. Van Loo G, Demol H, van Gurp M, et al. A matrix-assisted laser desorption ionization post-source decay (MALDI-PSD) analysis of proteins released from isolated liver mitochondria treated with recombinant truncated Bid. Cell Death Differ 2002;9:301–308.

    PubMed  Google Scholar 

  67. van Gurp M, Festjens N, van Loo G, Saelens X, Vandenabeele P. Mitochondrial intermembrane proteins in cell death. Biochem Biophys Res Commun 2003;304:487–497.

    PubMed  Google Scholar 

  68. Scarlett JL, Sheard PW, Hughes G, Ledgerwood EC, Ku HH, Murphy MP. Changes in mitochondrial membrane potential during staurosporine-induced apoptosis in Jurkat cells. FEBS Lett 2000;475:267–272.

    PubMed  CAS  Google Scholar 

  69. Ichas F, Mazat JP. From calcium signaling to cell death: two conformations for the mitochondrial permeability transition pore. Switching from low-to high-conductance state. Biochim Biophys Acta 1998;1366:33–50.

    PubMed  CAS  Google Scholar 

  70. Ly JD, Grubb DR, Lawen A. The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update. Apoptosis 2003;8:115–128.

    PubMed  CAS  Google Scholar 

  71. Waterhouse NJ, Ricci JE, Green DR. And all of a sudden it’s over: mitochondrial outer-membrane permeabilization in apoptosis. Biochimie 2002;84:113–121.

    PubMed  CAS  Google Scholar 

  72. Degli Esposti M, Dive C. Mitochondrial membrane permeabilisation by Bax/Bak. Biochem Biophys Res Commun 2003;304:455–4161.

    PubMed  Google Scholar 

  73. Tsujimoto Y, Shimizu S. The voltage-dependent anion channel: an essential player in apoptosis. Biochimie 2002;84:187–193.

    PubMed  CAS  Google Scholar 

  74. Arnoult D, Parone P, Martinou JC, Antonsson B, Estaquier J, Ameisen JC. Mitochondrial release of apoptosis-inducing factor occurs downstream of cytochrome c release in response to several proapoptotic stimuli. J Cell Biol 2002;159:923–929.

    PubMed  CAS  Google Scholar 

  75. Penninger JM, Kroemer G. Mitochondria, AIF and caspases — rivaling for cell death execution. Nat Cell Biol 2003;5:97–99.

    PubMed  CAS  Google Scholar 

  76. Li P, Nijhawan D, Budihardjo I, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997;91:479–489.

    PubMed  CAS  Google Scholar 

  77. Susin SA, Lorenzo HK, Zamzami N, et al. Mitochondrial release of caspase-2 and-9 during the apoptotic process. J Exp Med 1999;189:381–394.

    PubMed  CAS  Google Scholar 

  78. Zhivotovsky B, Samali A, Gahm A, Orrenius S. Caspases: their intracellular localization and translocation during apoptosis. Cell Death Differ 1999;6:644–651.

    PubMed  CAS  Google Scholar 

  79. Qin ZH, Wang Y, Kikly KK, et al. Pro-caspase-8 is predominantly localized in mitochondria and released into cytoplasm upon apoptotic stimulation. J Biol Chem 2001;276:8079–8086.

    PubMed  CAS  Google Scholar 

  80. Chandra D, Tang DG. Mitochondrially localized active caspase-9 and caspase-3 result mostly from translocation from the cytosol and partly from caspase-mediated activation in the organelle. Lack of evidence for Apaf-1-mediated procaspase-9 activation in the mitochondria. J Biol Chem 2003;278:17,408–17,420.

    PubMed  CAS  Google Scholar 

  81. Grutter MG. Caspases: key players in programmed cell death. Curr Opin Struct Biol 2000;10: 649–655.

    PubMed  CAS  Google Scholar 

  82. Slee EA, Harte MT, Kluck RM, et al. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2,-3,-6,-7,-8, and-10 in a caspase-9-dependent manner. J Cell Biol 1999;144:281–292.

    PubMed  CAS  Google Scholar 

  83. Gottlieb RA. Mitochondria: execution central. FEBS Lett 2000;482:6–12.

    PubMed  CAS  Google Scholar 

  84. Lassus P, Opitz-Araya X, Lazebnik Y. Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 2002;297:1352–1354.

    PubMed  CAS  Google Scholar 

  85. Guo Y, Srinivasula SM, Druilhe A, Fernandes-Alnemri T, Alnemri ES. Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. J Biol Chem 2002;277:13,430–13,437.

    PubMed  CAS  Google Scholar 

  86. Roy N, Deveraux QL, Takahashi R, Salvesen GS, Reed JC. The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. Embo J 1997;16:6914–6925.

    PubMed  CAS  Google Scholar 

  87. Liu T, Brouha B, Grossman D. Rapid induction of mitochondrial events and caspase-independent apoptosis in Survivin-targeted melanoma cells. Oncogene 2004;23:39–48.

    PubMed  CAS  Google Scholar 

  88. Salvesen GS, Duckett CS. IAP proteins: blocking the road to death’s door. Nat Rev Mol Cell Biol 2002;3:401–410.

    PubMed  CAS  Google Scholar 

  89. Li F, Ambrosini G, Chu EY, et al. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 1998;396:580–584.

    PubMed  CAS  Google Scholar 

  90. Fortugno P, Wall NR, Giodini A, et al. Survivin exists in immunochemically distinct subcellular pools and is involved in spindle microtubule function. J Cell Sci 2002;115:575–585.

    PubMed  CAS  Google Scholar 

  91. Altieri DC. Survivin, versatile modulation of cell division and apoptosis in cancer. Oncogene 2003;22:8581–8589.

    PubMed  CAS  Google Scholar 

  92. Shi Y. A conserved tetrapeptide motif: potentiating apoptosis through IAP-binding. Cell Death Differ 2002;9:93–95.

    PubMed  CAS  Google Scholar 

  93. Chai J, Du C, Wu JW, Kyin S, Wang X, Shi Y. Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 2000;406:855–862.

    PubMed  CAS  Google Scholar 

  94. Verhagen AM, Silke J, Ekert PG, et al. HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J Biol Chem 2002;277:445–454.

    PubMed  CAS  Google Scholar 

  95. Suzuki Y, Nakabayashi Y, Takahashi R. Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc Natl Acad Sci USA 2001;98:8662–8667.

    PubMed  CAS  Google Scholar 

  96. Susin SA, Lorenzo HK, Zamzami N, et al. Molecular characterization of mitochondrial apoptosisinducing factor. Nature 1999;397:441–446.

    PubMed  CAS  Google Scholar 

  97. Widlak P, Li LY, Wang X, Garrard WT. Action of recombinant human apoptotic endonuclease G on naked DNA and chromatin substrates: cooperation with exonuclease and DNase I. J Biol Chem 2001;276:48,404–48,409.

    PubMed  CAS  Google Scholar 

  98. Cande C, Cohen I, Daugas E, et al. Apoptosis-inducing factor (AIF): a novel caspase-independent death effector released from mitochondria. Biochimie 2002;84:215–222.

    PubMed  CAS  Google Scholar 

  99. Miramar MD, Costantini P, Ravagnan L, et al. NADH oxidase activity of mitochondrial apoptosisinducing factor. J Biol Chem 2001;276:16,391–16,398.

    PubMed  CAS  Google Scholar 

  100. Fleury C, Mignotte B, Vayssiere JL. Mitochondrial reactive oxygen species in cell death signaling. Biochimie 2002;84:131–141.

    PubMed  CAS  Google Scholar 

  101. Sidoti-de Fraisse C, Rincheval V, Risler Y, Mignotte B, Vayssiere JL. TNF-alpha activates at least two apoptotic signaling cascades. Oncogene 1998;17:1639–1651.

    PubMed  CAS  Google Scholar 

  102. Kirkland RA, Franklin JL. Bax, reactive oxygen, and cytochrome c release in neuronal apoptosis. Antioxid Redox Signal 2003;5:589–596.

    PubMed  CAS  Google Scholar 

  103. Cai J, Jones DP. Superoxide in apoptosis. Mitochondrial generation triggered by cytochrome c loss. J Biol Chem 1998;273:11,401–11,404.

    PubMed  CAS  Google Scholar 

  104. Lee HC, Wei YH. Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. Int J Biochem Cell Biol 2005;37:822–834.

    PubMed  CAS  Google Scholar 

  105. Fernandez-Checa JC. Redox regulation and signaling lipids in mitochondrial apoptosis. Biochem Biophys Res Commun 2003;304:471–479.

    PubMed  CAS  Google Scholar 

  106. Nutt LK, Chandra J, Pataer A, et al. Bax-mediated Ca2( mobilization promotes cytochrome c release during apoptosis. J Biol Chem 2002;277:20,301–20,308.

    PubMed  CAS  Google Scholar 

  107. Zhu L, Ling S, Yu XD, et al. Modulation of mitochondrial Ca(2() homeostasis by Bcl-2. J Biol Chem 1999;274:33,267–33,273.

    PubMed  CAS  Google Scholar 

  108. Wang HG, Pathan N, Ethell IM, et al. Ca2(-induced apoptosis through calcineurin dephosphorylation of BAD. Science 1999;284:339–343.

    PubMed  CAS  Google Scholar 

  109. Sreedhar AS, Csermely P. Heat shock proteins in the regulation of apoptosis: new strategies in tumor therapy; A comprehensive review. Pharmacol Ther 2004;101:227–257.

    PubMed  CAS  Google Scholar 

  110. Hartl FU. Molecular chaperones in cellular protein folding. Nature 1996;381:571–579.

    PubMed  CAS  Google Scholar 

  111. Neckers L. Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med 2002;8:S55–S61.

    PubMed  CAS  Google Scholar 

  112. Kamal A, Thao L, Sensintaffar J, et al. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 2003;425:407–410.

    PubMed  CAS  Google Scholar 

  113. Parcellier A, Gurbuxani S, Schmitt E, Solary E, Garrido C. Heat shock proteins, cellular chaperones that modulate mitochondrial cell death pathways. Biochem Biophys Res Commun 2003;304: 505–512.

    PubMed  CAS  Google Scholar 

  114. Pandey P, Saleh A, Nakazawa A, et al. Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. Embo J 2000;19:4310–4322.

    PubMed  CAS  Google Scholar 

  115. Bruey JM, Ducasse C, Bonniaud P, et al. Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2000;2:645–652.

    PubMed  CAS  Google Scholar 

  116. Beere HM, Wolf BB, Cain K, et al. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2000;2:469–475.

    PubMed  CAS  Google Scholar 

  117. Ravagnan L, Gurbuxani S, Susin SA, et al. Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol 2001;3:839–843.

    PubMed  CAS  Google Scholar 

  118. Samali A, Cai J, Zhivotovsky B, Jones DP, Orrenius S. Presence of a pre-apoptotic complex of pro-caspase-3, Hsp60 and Hsp10 in the mitochondrial fraction of jurkat cells. Embo J 1999; 18:2040–2048.

    PubMed  CAS  Google Scholar 

  119. Vermeulen K, Berneman ZN, Van Bockstaele DR. Cell cycle and apoptosis. Cell Prolif 2003; 36:165–175.

    PubMed  CAS  Google Scholar 

  120. Tang C, Willingham MC, Reed JC, et al. High levels of p26BCL-2 oncoprotein retard taxol-induced apoptosis in human pre-B leukemia cells. Leukemia 1994;8:1960–1969.

    PubMed  CAS  Google Scholar 

  121. Huang Y, Ray S, Reed JC, et al. Estrogen increases intracellular p26Bcl-2 to p21Bax ratios and inhibits taxol-induced apoptosis of human breast cancer MCF-7 cells. Breast Cancer Res Treat 1997; 42:73–81.

    PubMed  CAS  Google Scholar 

  122. Lebedeva I, Rando R, Ojwang J, Cossum P, Stein CA. Bcl-xL in prostate cancer cells: effects of overexpression and down-regulation on chemosensitivity. Cancer Res 2000;60:6052–6060.

    PubMed  CAS  Google Scholar 

  123. Kim R, Tanabe K, Uchida Y, Emi M, Toge T. Effect of Bcl-2 antisense oligonucleotide on drug-sensitivity in association with apoptosis in undifferentiated thyroid carcinoma. Int J Mol Med 2003;11:799–804.

    PubMed  CAS  Google Scholar 

  124. Basu A, Haldar S. Identification of a novel Bcl-xL phosphorylation site regulating the sensitivity of taxol-or 2-methoxyestradiol-induced apoptosis. FEBS Lett 2003;538:41–47.

    PubMed  CAS  Google Scholar 

  125. Gajate C, Barasoain I, Andreu JM, Mollinedo F. Induction of apoptosis in leukemic cells by the reversible microtubule-disrupting agent 2-methoxy-5-(2’,3’, 4’-trimethoxyphenyl)-2,4,6-cycloheptatrien-1-one: protection by Bcl-2 and Bcl-X(L) and cell cycle arrest. Cancer Res 2000;60:2651–2659.

    PubMed  CAS  Google Scholar 

  126. Haldar S, Jena N, Croce CM. Inactivation of Bcl-2 by phosphorylation. Proc Natl Acad Sci USA 1995;92:4507–4511.

    PubMed  CAS  Google Scholar 

  127. Poruchynsky MS, Wang EE, Rudin CM, Blagosklonny MV, Fojo T. Bcl-xL is phosphorylated in malignant cells following microtubule disruption. Cancer Res 1998;58:3331–3338.

    PubMed  CAS  Google Scholar 

  128. Basu A, Haldar S. Microtubule-damaging drugs triggered bcl2 phosphorylation-requirement of phosphorylation on both serine-70 and serine-87 residues of bcl2 protein. Int J Oncol 1998;13:659–664.

    PubMed  CAS  Google Scholar 

  129. Fang G, Chang BS, Kim CN, Perkins C, Thompson CB, Bhalla KN. “Loop” domain is necessary for taxol-induced mobility shift and phosphorylation of Bcl-2 as well as for inhibiting taxol-induced cytosolic accumulation of cytochrome c and apoptosis. Cancer Res 1998;58:3202–3208.

    PubMed  CAS  Google Scholar 

  130. Liu XM, Wang LG, Kreis W, Budman DR, Adams LM. Differential effect of vinorelbine versus paclitaxel on ERK2 kinase activity during apoptosis in MCF-7 cells. Br J Cancer 2001;85:1403–1411.

    PubMed  CAS  Google Scholar 

  131. Yuan SY, Hsu SL, Tsai KJ, Yang CR. Involvement of mitochondrial pathway in Taxol-induced apoptosis of human T24 bladder cancer cells. Urol Res 2002;30:282–288.

    PubMed  CAS  Google Scholar 

  132. Srivastava RK, Srivastava AR, Korsmeyer SJ, Nesterova M, Cho-Chung YS, Longo DL. Involvement of microtubules in the regulation of Bcl2 phosphorylation and apoptosis through cyclic AMP-dependent protein kinase. Mol Cell Biol 1998; 18:3509–3517.

    PubMed  CAS  Google Scholar 

  133. Shitashige M, Toi M, Yano T, Shibata M, Matsuo Y, Shibasaki F. Dissociation of Bax from a Bcl-2/Bax heterodimer triggered by phosphorylation of serine 70 of Bcl-2. J Biochem (Tokyo) 2001;130: 741–748.

    CAS  Google Scholar 

  134. Salah-Eldin AE, Inoue S, Tsukamoto S, Aoi H, Tsuda M. An association of Bcl-2 phosphorylation and Bax localization with their functions after hyperthermia and paclitaxel treatment. Int J Cancer 2003; 103:53–60.

    PubMed  CAS  Google Scholar 

  135. Yamamoto K, Ichijo H, Korsmeyer SJ. BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M. Mol Cell Biol 1999;19:8469–8478.

    PubMed  CAS  Google Scholar 

  136. Scatena CD, Stewart ZA, Mays D, et al. Mitotic phosphorylation of Bcl-2 during normal cell cycle progression and Taxol-induced growth arrest. J Biol Chem 1998;273:30,777–30,784.

    PubMed  CAS  Google Scholar 

  137. Ling YH, Tornos C, Perez-Soler R. Phosphorylation of Bcl-2 is a marker of M phase events and not a determinant of apoptosis. J Biol Chem 1998;273:18,984–18,991.

    PubMed  CAS  Google Scholar 

  138. Brichese L, Valette A. PP1 phosphatase is involved in Bcl-2 dephosphorylation after prolonged mitotic arrest induced by paclitaxel. Biochem Biophys Res Commun 2002;294:504–508.

    PubMed  CAS  Google Scholar 

  139. Fan M, Du L, Stone AA, Gilbert KM, Chambers TC. Modulation of mitogen-activated protein kinases and phosphorylation of Bcl-2 by vinblastine represent persistent forms of normal fluctuations at G2-M1. Cancer Res 2000;60:6403–6407.

    PubMed  CAS  Google Scholar 

  140. Cheng EH, Kirsch DG, Clem RJ, et al. Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 1997;278:1966–1968.

    PubMed  CAS  Google Scholar 

  141. Tudor G, Aguilera A, Halverson DO, Laing ND, Sausville EA. Susceptibility to drug-induced apoptosis correlates with differential modulation of Bad, Bcl-2 and Bcl-xL protein levels. Cell Death Differ 2000;7:574–586.

    PubMed  CAS  Google Scholar 

  142. Blagosklonny MV, Chuman Y, Bergan RC, Fojo T. Mitogen-activated protein kinase pathway is dispensable for microtubule-active drug-induced Raf-1/Bcl-2 phosphorylation and apoptosis in leukemia cells. Leukemia 1999;13:1028–1036.

    PubMed  CAS  Google Scholar 

  143. Liu QY, Stein CA. Taxol and estramustine-induced modulation of human prostate cancer cell apoptosis via alteration in bcl-xL and bak expression. Clin Cancer Res 1997;3:2039–2046.

    PubMed  CAS  Google Scholar 

  144. Basu A, Haldar S. The relationship between BcI2, Bax and p53: consequences for cell cycle progression and cell death. Mol Hum Reprod 1998;4:1099–1109.

    PubMed  CAS  Google Scholar 

  145. Brichese L, Barboule N, Heliez C, Valette A. Bcl-2 phosphorylation and proteasome-dependent degradation induced by paclitaxel treatment: consequences on sensitivity of isolated mitochondria to Bid. Exp Cell Res 2002;278:101–111.

    PubMed  CAS  Google Scholar 

  146. Sumantran VN, Ealovega MW, Nunez G, Clarke MF, Wicha MS. Overexpression of Bcl-XS sensitizes MCF-7 cells to chemotherapy-induced apoptosis. Cancer Res 1995;55:2507–2510.

    PubMed  CAS  Google Scholar 

  147. Strobel T, Tai YT, Korsmeyer S, Cannistra SA. BAD partly reverses paclitaxel resistance in human ovarian cancer cells. Oncogene 1998;17:2419–2427.

    PubMed  CAS  Google Scholar 

  148. Sawa H, Kobayashi T, Mukai K, Zhang W, Shiku H. Bax overexpression enhances cytochrome c release from mitochondria and sensitizes KATOIII gastric cancer cells to chemotherapeutic agentinduced apoptosis. Int J Oncol 2000;16:745–749.

    PubMed  CAS  Google Scholar 

  149. Jones NA, Turner J, McIlwrath AJ, Brown R, Dive C. Cisplatin-and paclitaxel-induced apoptosis of ovarian carcinoma cells and the relationship between bax and bak up-regulation and the functional status of p53. Mol Pharmacol 1998;53:819–826.

    PubMed  CAS  Google Scholar 

  150. Yamaguchi H, Paranawithana SR, Lee MW, Huang Z, Bhalla KN, Wang HG. Epothilone B analogue (BMS-247550)-mediated cytotoxicity through induction of Bax conformational change in human breast cancer cells. Cancer Res 2002;62:466–471.

    PubMed  CAS  Google Scholar 

  151. Makin GW, Corfe BM, Griffiths GJ, Thistlethwaite A, Hickman JA, Dive C. Damage-induced Bax N-terminal change, translocation to mitochondria and formation of Bax dimers/complexes occur regardless of cell fate. EMBO J 2001;20:6306–6315.

    PubMed  CAS  Google Scholar 

  152. Strobel T, Kraeft SK, Chen LB, Cannistra SA. BAX expression is associated with enhanced intracellular accumulation of paclitaxel: a novel role for BAX during chemotherapy-induced cell death. Cancer Res 1998;58:4776–4781.

    PubMed  CAS  Google Scholar 

  153. Andre N, Carre M, Brasseur G, et al. Paclitaxel targets mitochondria upstream of caspase activation in intact human neuroblastoma cells. FEBS Lett 2002;532:256–260.

    PubMed  CAS  Google Scholar 

  154. Perkins CL, Fang G, Kim CN, Bhalla KN. The role of Apaf-1, caspase-9, and bid proteins in etoposide-or paclitaxel-induced mitochondrial events during apoptosis. Cancer Res 2000;60:1645–1653.

    PubMed  CAS  Google Scholar 

  155. Suzuki A, Kawabata T, Kato M. Necessity of interleukin-1beta converting enzyme cascade in taxotere-initiated death signaling. Eur J Pharmacol 1998;343:87–92.

    PubMed  CAS  Google Scholar 

  156. Pan J, Xu G, Yeung SC. Cytochrome c release is upstream to activation of caspase-9, caspase-8, and caspase-3 in the enhanced apoptosis of anaplastic thyroid cancer cells induced by manumycin and paclitaxel. J Clin Endocrinol Metab 2001;86:4731–4740.

    PubMed  CAS  Google Scholar 

  157. Perkins C, Kim CN, Fang G, Bhalla KN. Overexpression of Apaf-1 promotes apoptosis of untreated and paclitaxel-or etoposide-treated HL-60 cells. Cancer Res 1998;58:4561–4566.

    PubMed  CAS  Google Scholar 

  158. Uyar D, Takigawa N, Mekhail T, et al. Apoptotic pathways of epothilone BMS 310705. Gynecol Oncol 2003;91:173–178.

    PubMed  CAS  Google Scholar 

  159. Au JL, Kumar RR, Li D, Wientjes MG. Kinetics of hallmark biochemical changes in paclitaxelinduced apoptosis. AAPS Pharm Sci 1999;1:E8.

    CAS  Google Scholar 

  160. Oyaizu H, Adachi Y, Taketani S, Tokunaga R, Fukuhara S, Ikehara S. A crucial role of caspase 3 and caspase 8 in paclitaxel-induced apoptosis. Mol Cell Biol Res Commun 1999;2:36–41.

    PubMed  CAS  Google Scholar 

  161. Samejima K, Svingen PA, Basi GS, et al. Caspase-mediated cleavage of DNA topoisomerase I at unconventional sites during apoptosis. J Biol Chem 1999;274:4335–4340.

    PubMed  CAS  Google Scholar 

  162. Yim H, Jin YH, Park BD, Choi HJ, Lee SK. Caspase-3-mediated cleavage of Cdc6 induces nuclear localization of p49-truncated Cdc6 and apoptosis. Mol Biol Cell 2003;14:4250–4259.

    PubMed  CAS  Google Scholar 

  163. Ferreira CG, Span SW, Peters GJ, Kruyt FA, Giaccone G. Chemotherapy triggers apoptosis in a caspase-8-dependent and mitochondria-controlled manner in the non-small cell lung cancer cell line NCI-H460. Cancer Res 2000;60:7133–7141.

    PubMed  CAS  Google Scholar 

  164. Ling Y, Zhong Y, Perez-Soler R. Disruption of cell adhesion and caspase-mediated proteolysis of beta-and gamma-catenins and APC protein in paclitaxel-induced apoptosis. Mol Pharmacol 2001;59:593–603.

    PubMed  CAS  Google Scholar 

  165. Friedrich K, Wieder T, Von Haefen C, et al. Overexpression of caspase-3 restores sensitivity for druginduced apoptosis in breast cancer cell lines with acquired drug resistance. Oncogene 2001;20: 2749–2760.

    PubMed  CAS  Google Scholar 

  166. Kolfschoten GM, Hulscher TM, Duyndam MC, Pinedo HM, Boven E. Variation in the kinetics of caspase-3 activation, Bcl-2 phosphorylation and apoptotic morphology in unselected human ovarian cancer cell lines as a response to docetaxel. Biochem Pharmacol 2002;63:733–743.

    PubMed  CAS  Google Scholar 

  167. Yang LX, Zhu J, Wang HJ, Holton RA. Enhanced apoptotic effects of novel paclitaxel analogs on NCI/ADR-RES breast cancer cells. Anticancer Res 2003;23:3295–3301.

    PubMed  CAS  Google Scholar 

  168. Panvichian R, Orth K, Pilat MJ, et al. Signaling network of paclitaxel-induced apoptosis in the LNCaP prostate cancer cell line. Urology 1999;54:746–752.

    PubMed  CAS  Google Scholar 

  169. Arnt CR, Chiorean MV, Heldebrant MP, Gores GJ, Kaufmann SH. Synthetic Smac/DIABLO peptides enhance the effects of chemotherapeutic agents by binding XIAP and cIAP1 in situ. J Biol Chem 2002;277:44,236–44,243.

    PubMed  CAS  Google Scholar 

  170. McNeish IA, Bell S, McKay T, Tenev T, Marani M, Lemoine NR. Expression of Smac/DIABLO in ovarian carcinoma cells induces apoptosis via a caspase-9-mediated pathway. Exp Cell Res 2003;286: 186–198.

    PubMed  CAS  Google Scholar 

  171. Huisman C, Ferreira CG, Broker LE, et al. Paclitaxel triggers cell death primarily via caspaseindependent routes in the non-small cell lung cancer cell line NCI-H460. Clin Cancer Res 2002;8: 596–606.

    PubMed  CAS  Google Scholar 

  172. Broker LE, Huisman C, Span SW, Rodriguez JA, Kruyt FA, Giaccone G. Cathepsin B mediates caspase-independent cell death induced by microtubule stabilizing agents in non-small cell lung cancer cells. Cancer Res 2004;64:27–30.

    PubMed  Google Scholar 

  173. Ofir R, Scidman R, Rabinski T, et al. Taxol-induced apoptosis in human SKOV3 ovarian and MCF7 breast carcinoma cells is caspase-3 and caspase-9 independent. Cell Death Differ 2002;9:636–642.

    PubMed  CAS  Google Scholar 

  174. Blagosklonny MV, Robey R, Sheikh MS, Fojo T. Paclitaxel-induced FasL-independent apoptosis and slow (non-apoptotic) cell death. Cancer Biol Ther 2002;1:113–117.

    PubMed  CAS  Google Scholar 

  175. Sunters A, Fernandez de Mattos S, Stahl M, et al. FoxO3a transcriptional regulation of Bim controls apoptosis in paclitaxel-treated breast cancer cell lines. J Biol Chem 2003;278:49,795–49,805.

    PubMed  CAS  Google Scholar 

  176. Bouillet P, Metcalf D, Huang DC, et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 1999;286:1735–1738.

    PubMed  CAS  Google Scholar 

  177. Bhalla KN. Microtubule-targeted anticancer agents and apoptosis. Oncogene 2003;22:9075–9086.

    PubMed  CAS  Google Scholar 

  178. Li R, Moudgil T, Ross HJ, Hu H-M. Apoptosis of non-small-cell lung cancer cell lines after paclitaxel treatment involves the BH3-only proapoptotic protein Bim. Cell Death Differ 2005;12:292–303.

    PubMed  CAS  Google Scholar 

  179. Lei K, Davis RJ. JNK phosphorylation of Bim-related members of the Bcl2 family induces Baxdependent apoptosis. Proc Natl Acad Sci USA 2003; 100:2432–2437.

    PubMed  CAS  Google Scholar 

  180. Jiang X, Wilford C, Duensing S, Munger K, Jones G, Jones D. Participation of Survivin in mitotic and apoptotic activities of normal and tumor-derived cells. J Cell Biochem 2001;83:342–354.

    PubMed  CAS  Google Scholar 

  181. Zaffaroni N, Pennati M, Colella G, et al. Expression of the anti-apoptotic gene survivin correlates with taxol resistance in human ovarian cancer. Cell Mol Life Sci 2002;59:1406–1412.

    PubMed  CAS  Google Scholar 

  182. Tan G, Heqing L, Jiangbo C, et al. Apoptosis induced by low-dose paclitaxel is associated with p53 upregulation in nasopharyngeal carcinoma cells. Int J Cancer 2002;97:168–172.

    PubMed  CAS  Google Scholar 

  183. Giodini A, Kallio MJ, Wall NR, et al. Regulation of microtubule stability and mitotic progression by survivin. Cancer Res 2002;62:2462–2467.

    PubMed  CAS  Google Scholar 

  184. Li F. Survivin study: what is the next wave? J Cell Physiol 2003;197:8–29.

    PubMed  CAS  Google Scholar 

  185. Ling X, Bernacki RJ, Brattain MG, Li F. Induction of survivin expression by taxol (paclitaxel) is an early event which is independent of taxol-mediated G2/M arrest. J Biol Chem 2004;279:15,196–15,203.

    PubMed  CAS  Google Scholar 

  186. Song Z, Yao X, Wu M. Direct interaction between survivin and Smac/DIABLO is essential for the antiapoptotic activity of survivin during taxol-induced apoptosis. J Biol Chem 2003;278:23,130–23,140.

    PubMed  CAS  Google Scholar 

  187. Lens SM, Wolthuis RM, Klompmaker R, et al. Survivin is required for a sustained spindle checkpoint arrest in response to lack of tension. EMBO J 2003;22:2934–2947.

    PubMed  CAS  Google Scholar 

  188. Shen SC, Huang TS, Jee SH, Kuo ML. Taxol-induced p34cdc2 kinase activation and apoptosis inhibited by 12-O-tetradecanoylphorbol-13-acetate in human breast MCF-7 carcinoma cells. Cell Growth Differ 1998;9:23–29.

    PubMed  CAS  Google Scholar 

  189. Makino K, Yu D, Hung MC. Transcriptional upregulation and activation of p55Cdc via p34(cdc2) in Taxol-induced apoptosis. Oncogene 2001;20:2537–2543.

    PubMed  CAS  Google Scholar 

  190. Ibrado AM, Kim CN, Bhalla K. Temporal relationship of CDK1 activation and mitotic arrest to cytosolic accumulation of cytochrome C and caspase-3 activity during Taxol-induced apoptosis of human AML HL-60 cells. Leukemia 1998;12:1930–1936.

    PubMed  CAS  Google Scholar 

  191. Chadebech P, Truchet I, Brichese L, Valette A. Up-regulation of cdc2 protein during paclitaxelinduced apoptosis. Int J Cancer 2000;87:779–786.

    PubMed  CAS  Google Scholar 

  192. Huang TS, Shu CH, Chao Y, Chen SN, Chen LL. Activation of MAD 2 checkprotein and persistence of cyclin B1/CDC 2 activity associate with paclitaxel-induced apoptosis in human nasopharyngeal carcinoma cells. Apoptosis 2000;5:235–241.

    PubMed  CAS  Google Scholar 

  193. O’Connor DS, Wall NR, Porter AC, Altieri DC. A p34(cdc2) survival checkpoint in cancer. Cancer Cell 2002;2:43–54.

    PubMed  CAS  Google Scholar 

  194. Mollinedo F, Gajate C. Microtubules, microtubule-interfering agents and apoptosis. Apoptosis 2003;8:413–450.

    PubMed  CAS  Google Scholar 

  195. Lu QL, Hanby AM, Nasser Hajibagheri MA, et al. Bcl-2 protein localizes to the chromosomes of mitotic nuclei and is correlated with the cell cycle in cultured epithelial cell lines. J Cell Sci 1994;107(pt 2):363–371.

    PubMed  CAS  Google Scholar 

  196. Pathan N, Aime-Sempe C, Kitada S, Haldar S, Reed JC. Microtubule-targeting drugs induce Bcl-2 phosphorylation and association with Pin1. Neoplasia 2001;3:70–79.

    PubMed  CAS  Google Scholar 

  197. Wang TH, Wang HS. p53, apoptosis and human cancers. J Formos Med Assoc 1996;95:509–522.

    PubMed  CAS  Google Scholar 

  198. Woods CM, Zhu J, McQueney PA, Bollag D, Lazarides E. Taxol-induced mitotic block triggers rapid onset of a p53-independent apoptotic pathway. Mol Med 1995;1:506–526.

    PubMed  CAS  Google Scholar 

  199. Bacus SS, Gudkov AV, Lowe M, et al. Taxol-induced apoptosis depends on MAP kinase pathways (ERK and p38) and is independent of p53. Oncogene 2001;20:147–155.

    PubMed  CAS  Google Scholar 

  200. Fan S, Cherney B, Reinhold W, Rucker K, O’Connor PM. Disruption of p53 function in immortalized human cells does not affect survival or apoptosis after taxol or vincristine treatment. Clin Cancer Res 1998;4:1047–1054.

    PubMed  CAS  Google Scholar 

  201. Debernardis D, Sire EG, De Feudis P, et al. p53 status does not affect sensitivity of human ovarian cancer cell lines to paclitaxel. Cancer Res 1997;57:870–874.

    PubMed  CAS  Google Scholar 

  202. King TC, Akerley W, Fan AC, et al. p53 mutations do not predict response to paclitaxel in metastatic nonsmall cell lung carcinoma. Cancer 2000;89:769–773.

    PubMed  CAS  Google Scholar 

  203. Vikhanskaya F, Vignati S, Beccaglia P, et al. Inactivation of p53 in a human ovarian cancer cell line increases the sensitivity to paclitaxel by inducing G2/M arrest and apoptosis. Exp Cell Res 1998;241: 96–101.

    PubMed  CAS  Google Scholar 

  204. Liu XM, Jiang JD, Ferrari AC, Budman DR, Wang LG. Unique induction of p21(WAF1/CIP1)expression by vinorelbine in androgen-independent prostate cancer cells. Br J Cancer 2003;89:1566–1573.

    PubMed  CAS  Google Scholar 

  205. Vayssade M, Faridoni-Laurens L, Benard J, Ahomadegbe JC. Expression of p53-family members and associated target molecules in breast cancer cell lines in response to vincristine treatment. Biochem Pharmacol 2002;63:1609–1617.

    PubMed  CAS  Google Scholar 

  206. Ciciarello M, Mangiacasale R, Casenghi M, et al. p53 displacement from centrosomes and p53-mediated G1 arrest following transient inhibition of the mitotic spindle. J Biol Chem 2001;276: 19,205–19,213.

    PubMed  CAS  Google Scholar 

  207. Blagosklonny MV, Schulte TW, Nguyen P, Mimnaugh EG, Trepel J, Neckers L. Taxol induction of p21WAF1 and p53 requires c-raf-1. Cancer Res 1995;55:4623–4626.

    PubMed  CAS  Google Scholar 

  208. Yang HL, Pan JX, Sun L, Yeung SC. p21 Waf-1 (Cip-1) enhances apoptosis induced by manumycin and paclitaxel in anaplastic thyroid cancer cells. J Clin Endocrinol Metab 2003;88:763–772.

    PubMed  CAS  Google Scholar 

  209. Fojo T. p53 as a therapeutic target: unresolved issues on the road to cancer therapy targeting mutant p53. Drug Resist Updat 2002;5:209–216.

    PubMed  CAS  Google Scholar 

  210. Pourroy B, Carre M, Honore S, et al. Low concentrations of vinflunine induce apoptosis in human SK-N-SH neuroblastoma cells through a postmitotic G1 arrest and a mitochondrial pathway. Mol Pharmacol 2004;66:580–591.

    PubMed  CAS  Google Scholar 

  211. Barboule N, Chadebech P, Baldin V, Vidal S, Valette A. Involvement of p21 in mitotic exit after paclitaxel treatment in MCF-7 breast adenocarcinoma cell line. Oncogene 1997;15:2867–2875.

    PubMed  CAS  Google Scholar 

  212. Long BH, Fairchild CR. Paclitaxel inhibits progression of mitotic cells to G1 phase by interference with spindle formation without affecting other microtubule functions during anaphase and telephase. Cancer Res 1994;54:4355–4361.

    PubMed  CAS  Google Scholar 

  213. Wu Y, Mehew JW, Heckman CA, Arcinas M, Boxer LM. Negative regulation of bcl-2 expression by p53 in hematopoietic cells. Oncogene 2001;20:240–251.

    PubMed  CAS  Google Scholar 

  214. Han J, Flemington C, Houghton AB, et al. Expression of bbc3, a pro-apoptotic BH3-only gene, is regulated by diverse cell death and survival signals. Proc Natl Acad Sci USA 2001;98:11,318–11,323.

    PubMed  CAS  Google Scholar 

  215. Nakano K, Vousden KH. PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 2001;7:683–694.

    PubMed  CAS  Google Scholar 

  216. Giannakakou P, Nakano M, Nicolaou KC, et al. Enhanced microtubule-dependent trafficking and p53 nuclear accumulation by suppression of microtubule dynamics. Proc Natl Acad Sci USA 2002;99: 10,855–10,860.

    PubMed  CAS  Google Scholar 

  217. Moll UM, Marchenko N, Zhang XK. p53 and Nur 77/TR3-transcription factors that directly target mitochondria for cell death induction. Oncogene 2006;25:4725–4743.

    PubMed  CAS  Google Scholar 

  218. Jiang P, Du W, Heese K, Wu M. The Bad guy cooperates with a good cop p53: Bad is transcriptionally up-regulated by p53 and forms Bad/p53 complex at the mitochondria to induce apoptosis. Mol Cell Biol 2006;26:9071–9082.

    PubMed  CAS  Google Scholar 

  219. Perfettini JL, Kroemer RT, Kroemer G. Fatal liaisons of p53 with Bax and Bak. Nature Cell Biol 2004;6:386–388.

    PubMed  CAS  Google Scholar 

  220. Blagosklonny MV, Iglesias A, Zhan Z, Fojo T. Like p53, the proliferation-associated protein p120 accumulates in human cancer cells following exposure to anticancer drugs. Biochem Biophys Res Commun 1998;244:368–373.

    PubMed  CAS  Google Scholar 

  221. Amato SF, Swart JM, Berg M, Wanebo HJ, Mehta SR, Chiles TC. Transient stimulation of the c-Jun-NH2-terminal kinase/activator protein 1 pathway and inhibition of extracellular signal-regulated kinase are early effects in paclitaxel-mediated apoptosis in human B lymphoblasts. Cancer Res 1998;58:241–247.

    PubMed  CAS  Google Scholar 

  222. Stone AA, Chambers TC. Microtubule inhibitors elicit differential effects on MAP kinase (JNK, ERK, and p38) signaling pathways in human KB-3 carcinoma cells. Exp Cell Res 2000;254:110–119.

    PubMed  CAS  Google Scholar 

  223. Boldt S, Weidle UH, Kolch W. The role of MAPK pathways in the action of chemotherapeutic drugs. Carcinogenesis 2002;23:1831–1838.

    PubMed  CAS  Google Scholar 

  224. Guise S, Braguer D, Carles G, Delacourte A, Briand C. Hyperphosphorylation of tau is mediated by ERK activation during anticancer drug-induced apoptosis in neuroblastoma cells. J Neurosci Res 2001; 63:257–267.

    PubMed  CAS  Google Scholar 

  225. Okano J, Rustgi AK. Paclitaxel induces prolonged activation of the Ras/MEK/ERK pathway independently of activating the programmed cell death machinery. J Biol Chem 2001;276:19,555–19,564.

    PubMed  CAS  Google Scholar 

  226. Townsend KJ, Trusty JL, Traupman MA, Eastman A, Craig RW. Expression of the antiapoptotic MCL1 gene product is regulated by a mitogen activated protein kinase-mediated pathway triggered through microtubule disruption and protein kinase C. Oncogene 1998;17:1223–1234.

    PubMed  CAS  Google Scholar 

  227. McDaid HM, Horwitz SB. Selective potentiation of paclitaxel (taxol)-induced cell death by mitogenactivated protein kinase kinase inhibition in human cancer cell lines. Mol Pharmacol 2001;60: 290–301.

    PubMed  CAS  Google Scholar 

  228. Scidman R, Gitelman I, Sagi O, Horwitz SB, Wolfson M. The role of ERK 1/2 and p38 MAP-kinase pathways in taxol-induced apoptosis in human ovarian carcinoma cells. Exp Cell Res 2001;268: 84–92.

    Google Scholar 

  229. MacKeigan JP, Collins TS, Ting JP. MEK inhibition enhances paclitaxel-induced tumor apoptosis. J Biol Chem 2000;275:38,953–38,956.

    PubMed  CAS  Google Scholar 

  230. Schmidt CM, McKillop IH, Cahill PA, Sitzmann JV. Increased MAPK expression and activity in primary human hepatocellular carcinoma. Biochem Biophys Res Commun 1997;236:54–58.

    PubMed  CAS  Google Scholar 

  231. Loda M, Capodieci P, Mishra R, et al. Expression of mitogen-activated protein kinase phosphatase-1 in the early phases of human epithelial carcinogenesis. Am J Pathol 1996;149:1553–1564.

    PubMed  CAS  Google Scholar 

  232. Mabuchi S, Ohmichi M, Kimura A, et al. Inhibition of phosphorylation of BAD and Raf-1 by Akt sensitizes human ovarian cancer cells to paclitaxel. J Biol Chem 2002;277:33,490–33,500.

    PubMed  CAS  Google Scholar 

  233. Luciano F, Jacquel A, Colosetti P, et al. Phosphorylation of Bim-EL by Erk1/2 on serine 69 promotes its degradation via the proteasome pathway and regulates its proapoptotic function. Oncogene 2003; 22:6785–6793.

    PubMed  CAS  Google Scholar 

  234. Ley R, Balmanno K, Hadfield K, Weston C, Cook SJ. Activation of the ERK1/2 signaling pathway promotes phosphorylation and proteasome-dependent degradation of the BH3-only protein, Bim. J Biol Chem 2003;278:18,811–18,816.

    PubMed  CAS  Google Scholar 

  235. Taxman DJ, MacKeigan JP, Clements C, Bergstralh DT, Ting JP. Transcriptional profiling of targets for combination therapy of lung carcinoma with paclitaxel and mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitor. Cancer Res 2003;63:5095–5104.

    PubMed  CAS  Google Scholar 

  236. Takenaka K, Moriguchi T, Nishida E. Activation of the protein kinase p38 in the spindle assembly checkpoint and mitotic arrest. Science 1998;280:599–602.

    PubMed  CAS  Google Scholar 

  237. Kurata S. Selective activation of p38 MAPK cascade and mitotic arrest caused by low level oxidative stress. J Biol Chem 2000;275:23,413–23,416.

    PubMed  CAS  Google Scholar 

  238. Reshkin SJ, Bellizzi A, Cardone RA, Tommasino M, Casavola V, Paradiso A. Paclitaxel induces apoptosis via protein kinase A-and p38 mitogen-activated protein-dependent inhibition of the Na+/H+ exchanger (NHE) NHE isoform 1 in human breast cancer cells. Clin Cancer Res 2003;9:2366–2373.

    PubMed  CAS  Google Scholar 

  239. Yu C, Wang S, Dent P, Grant S. Sequence-dependent potentiation of paclitaxel-mediated apoptosis in human leukemia cells by inhibitors of the mitogen-activated protein kinase kinase/mitogen-activated protein kinase pathway. Mol Pharmacol 2001;60:143–154.

    PubMed  CAS  Google Scholar 

  240. Nagata K, Puls A, Futter C, et al. The MAP kinase kinase kinase MLK2 co-localizes with activated JNK along microtubules and associates with kinesin superfamily motor KIF3. EMBO J 1998;17: 149–158.

    PubMed  CAS  Google Scholar 

  241. Wang TH, Wang HS, Ichijo H, et al. Microtubule-interfering agents activate c-Jun N-terminal kinase/stress-activated protein kinase through both Ras and apoptosis signal-regulating kinase pathways. J Biol Chem 1998;273:4928–4936.

    PubMed  CAS  Google Scholar 

  242. Lee LF, Li G, Templeton DJ, Ting JP. Paclitaxel (Taxol)-induced gene expression and cell death are both mediated by the activation of c-Jun NH2-terminal kinase (JNK/SAPK). J Biol Chem 1998;273: 28,253–28,260.

    PubMed  CAS  Google Scholar 

  243. Ham YM, Choi JS, Chun KH, Joo SH, Lee SK. The c-Jun N-terminal kinase 1 activity is differentially regulated by specific mechanisms during apoptosis. J Biol Chem 2003;278:50,330–50,337.

    PubMed  CAS  Google Scholar 

  244. Kwan R, Burnside J, Kurosaki T, Cheng G. MEKK1 is essential for DT40 cell apoptosis in response to microtubule disruption. Mol Cell Biol 2001;21:7183–7190.

    PubMed  CAS  Google Scholar 

  245. Shiah SG, Chuang SE, Kuo ML. Involvement of Asp-Glu-Val-Asp-directed, caspase-mediated mitogen-activated protein kinase kinase 1 Cleavage, c-Jun N-terminal kinase activation, and subsequent Bcl-2 phosphorylation for paclitaxel-induced apoptosis in HL-60 cells. Mol Pharmacol 2001;59: 254–262.

    PubMed  CAS  Google Scholar 

  246. Srivastava RK, Mi QS, Hardwick JM, Longo DL. Deletion of the loop region of Bcl-2 completely blocks paclitaxel-induced apoptosis. Proc Natl Acad Sci USA 1999;96:3775–3780.

    PubMed  CAS  Google Scholar 

  247. Fan M, Goodwin M, Vu T, Brantley-Finley C, Gaarde WA, Chambers TC. Vinblastine-induced phosphorylation of Bcl-2 and Bcl-XL is mediated by JNK and occurs in parallel with inactivation of the Raf-1/MEK/ERK cascade. J Biol Chem 2000;275:29,980–29,985.

    PubMed  CAS  Google Scholar 

  248. Wang TH, Popp DM, Wang HS, et al. Microtubule dysfunction induced by paclitaxel initiates apoptosis through both c-Jun N-terminal kinase (JNK)-dependent and-independent pathways in ovarian cancer cells. J Biol Chem 1999;274:8208–8216.

    PubMed  CAS  Google Scholar 

  249. Yujiri T, Fanger GR, Garrington TP, Schlesinger TK, Gibson S, Johnson GL. MEK kinase 1 (MEKK1) transduces c-Jun NH2-terminal kinase activation in response to changes in the microtubule cytoskeleton. J Biol Chem 1999;274:12,605–12,610.

    PubMed  CAS  Google Scholar 

  250. Blagosklonny MV, Giannakakou P, el-Deiry WS, et al. Raf-1/bcl-2 phosphorylation: a step from microtubule damage to cell death. Cancer Res 1997;57:130–135.

    PubMed  CAS  Google Scholar 

  251. Lee M, Koh WS, Han SS. Down-regulation of Raf-1 kinase is associated with paclitaxel resistance in human breast cancer MCF-7/Adr cells. Cancer Lett 2003;193:57–64.

    PubMed  CAS  Google Scholar 

  252. Blagosklonny MV, Schulte T, Nguyen P, Trepel J, Neckers LM. Taxol-induced apoptosis and phosphorylation of Bcl-2 protein involves c-Raf-1 and represents a novel c-Raf-1 signal transduction pathway. Cancer Res 1996;56:1851–1854.

    PubMed  CAS  Google Scholar 

  253. Wang HG, Miyashita T, Takayama S, et al. Apoptosis regulation by interaction of Bcl-2 protein and Raf-1 kinase. Oncogene 1994;9:2751–2756.

    PubMed  CAS  Google Scholar 

  254. Lin HL, Liu TY, Chau GY, Lui WY, Chi CW. Comparison of 2-methoxyestradiol-induced, docetaxelinduced, and paclitaxel-induced apoptosis in hepatoma cells and its correlation with reactive oxygen species. Cancer 2000;89:983–994.

    PubMed  CAS  Google Scholar 

  255. Su Y, Zharikov SI, Block ER. Microtubule-active agents modify nitric oxide production in pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 2002;282:L1183–L1189.

    PubMed  CAS  Google Scholar 

  256. Simizu S, Takada M, Umezawa K, Imoto M. Requirement of caspase-3(-like) protease-mediated hydrogen peroxide production for apoptosis induced by various anticancer drugs. J Biol Chem 1998;273:26,900–26,907.

    PubMed  CAS  Google Scholar 

  257. Shtil AA, Mandlekar S, Yu R, et al. Differential regulation of mitogen-activated protein kinases by microtubule-binding agents in human breast cancer cells. Oncogene 1999;18:377–384.

    PubMed  CAS  Google Scholar 

  258. Alexandre J, Batteux F, Nicco C, Chereau C, Laurent A, Guillevin L, Weill B, Goldwasser F. Accumulation of hydrogen peroxide is an early and crucial step for paclitaxel-induced cancer cell death both in vitro and in vivo. Int J Cancer 2006; 119:41–48.

    PubMed  CAS  Google Scholar 

  259. Gehrmann M, Pfister K, Hutzler P, Gastpar R, Margulis B, Multhoff G. Effects of antineoplastic agents on cytoplasmic and membrane-bound heat shock protein 70 (Hsp70) levels. Biol Chem 2002; 383:1715–1725.

    PubMed  CAS  Google Scholar 

  260. Kemp TJ, Causton HC, Clerk A. Changes in gene expression induced by H(2)O(2) in cardiac myocytes. Biochem Biophys Res Commun 2003;307:416–421.

    PubMed  CAS  Google Scholar 

  261. Kwak HJ, Jun CD, Pae HO, et al. The role of inducible 70-kDa heat shock protein in cell cycle control, differentiation, and apoptotic cell death of the human myeloid leukemic HL-60 cells. Cell Immunol 1998;187:1–12.

    PubMed  CAS  Google Scholar 

  262. Solit DB, Basso AD, Olshen AB, Scher HI, Rosen N. Inhibition of heat shock protein 90 function down-regulates Akt kinase and sensitizes tumors to Taxol. Cancer Res 2003;63:2139–2144.

    PubMed  CAS  Google Scholar 

  263. Gamier C, Barbier P, Gilli R, Lopez C, Peyrot V, Briand C. Heat-shock protein 90 (hsp90) binds in vitro to tubulin dimer and inhibits microtubule formation. Biochem Biophys Res Commun 1998;250: 414–419.

    Google Scholar 

  264. Sanchez C, Padilla R, Paciucci R, Zabala JC, Avila J. Binding of heat-shock protein 70 (hsp70) to tubulin. Arch Biochem Biophys 1994;310:428–432.

    PubMed  CAS  Google Scholar 

  265. Sanchez ER, Redmond T, Scherrer LC, Bresnick EH, Welsh MJ, Pratt WB. Evidence that the 90-kilodalton heat shock protein is associated with tubulin-containing complexes in L cell cytosol and in intact PtK cells. Mol Endocrinol 1988;2:756–760.

    PubMed  CAS  Google Scholar 

  266. Czar MJ, Welsh MJ, Pratt WB. Immunofluorescence localization of the 90-kDa heat-shock protein to cytoskeleton. Eur J Cell Biol 1996;70:322–330.

    PubMed  CAS  Google Scholar 

  267. Skidgel RA. Proliferation of regulatory mechanisms for eNOS: an emerging role for the cytoskeleton. Am J Physiol Lung Cell Mol Physiol 2002;282:L1179–L1182.

    PubMed  CAS  Google Scholar 

  268. Byrd CA, Bornmann W, Erdjument-Bromage H, et al. Heat shock protein 90 mediates macrophage activation by Taxol and bacterial lipopolysaccharide. Proc Natl Acad Sci USA 1999;96:5645–5650.

    PubMed  CAS  Google Scholar 

  269. Ochel HJ, Gademann G. Heat-shock protein 90: potential involvement in the pathogenesis of malignancy and pharmacological intervention. Onkologie 2002;25:466–473.

    PubMed  Google Scholar 

  270. Hwang S, Ding A. Activation of NF-kappa B in murine macrophages by taxol. Cancer Biochem Biophys 1995;14:265–272.

    PubMed  CAS  Google Scholar 

  271. Bourgarel-Rey V, Vallee S, Rimet O, et al. Involvement of nuclear factor kappaB in c-Myc induction by tubulin polymerization inhibitors. Mol Pharmacol 2001;59:1165–1170.

    PubMed  CAS  Google Scholar 

  272. Patel NM, Nozaki S, Shortle NH, et al. Paclitaxel sensitivity of breast cancer cells with constitutively active NF-kappaB is enhanced by IkappaBalpha super-repressor and parthenolide. Oncogene 2000; 19:4159–4169.

    PubMed  CAS  Google Scholar 

  273. Zhang H, Morisaki T, Nakahara C, et al. PSK-mediated NF-kappaB inhibition augments docetaxelinduced apoptosis in human pancreatic cancer cells NOR-P1. Oncogene 2003;22:2088–2096.

    PubMed  CAS  Google Scholar 

  274. Dong QG, Sclabas GM, Fujioka S, et al. The function of multiple IkappaB: NF-kappaB complexes in the resistance of cancer cells to Taxol-induced apoptosis. Oncogene 2002;21:6510–6519.

    PubMed  CAS  Google Scholar 

  275. Huang Y, Johnson KR, Norris JS, Fan W. Nuclear factor-kappaB/IkappaB signaling pathway may contribute to the mediation of paclitaxel-induced apoptosis in solid tumor cells. Cancer Res 2000;60: 4426–4432.

    PubMed  CAS  Google Scholar 

  276. Huang Y, Fan W. IkappaB kinase activation is involved in regulation of paclitaxel-induced apoptosis in human tumor cell lines. Mol Pharmacol 2002;61:105–113.

    PubMed  CAS  Google Scholar 

  277. Cardone MH, Roy N, Stennicke HR, et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 1998;282:1318–1321.

    PubMed  CAS  Google Scholar 

  278. Page C, Lin HJ, Jin Y, et al. Overexpression of Akt/AKT can modulate chemotherapy-induced apoptosis. Anticancer Res 2000;20:407–416.

    PubMed  CAS  Google Scholar 

  279. Mitsuuchi Y, Johnson SW, Selvakumaran M, Williams SJ, Hamilton TC, Testa JR. The phosphatidylinositol 3-kinase/AKT signal transduction pathway plays a critical role in the expression of p21WAF1/CIP1/SDI1 induced by cisplatin and paclitaxel. Cancer Res 2000;60:5390–5394.

    PubMed  CAS  Google Scholar 

  280. Kwon HK, Bae GU, Yoon JW, et al. Constitutive activation of p70S6k in cancer cells. Arch Pharm Res 2002;25:685–690.

    PubMed  CAS  Google Scholar 

  281. Le XF, Hittelman WN, Liu J, et al. Paclitaxel induces inactivation of p70 S6 kinase and phosphorylation of Thr421 and Ser424 via multiple signaling pathways in mitosis. Oncogene 2003;22:484–497.

    PubMed  CAS  Google Scholar 

  282. Harada H, Andersen JS, Mann M, Terada N, Korsmeyer SJ. p70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule BAD. Proc Natl Acad Sci USA 2001;98: 9666–9670.

    PubMed  CAS  Google Scholar 

  283. Varbiro G, Veres B, Gallyas F Jr, Sumegi B. Direct effect of Taxol on free radical formation and mitochondrial permeability transition. Free Radic Biol Med 2001;31:548–558.

    PubMed  CAS  Google Scholar 

  284. Andre N, Braguer D, Brasseur G, et al. Paclitaxel induces release of cytochrome c from mitochondria isolated from human neuroblastoma cells. Cancer Res 2000;60:5349–5353.

    PubMed  CAS  Google Scholar 

  285. Carre M, Carles G, Andre N, et al. Involvement of microtubules and mitochondria in the antagonism of arsenic trioxide on paclitaxel-induced apoptosis. Biochem Pharmacol 2002;63:1831–1842.

    PubMed  CAS  Google Scholar 

  286. Kidd JF, Pilkington MF, Schell MJ, et al. Paclitaxel affects cytosolic calcium signals by opening the mitochondrial permeability transition pore. J Biol Chem 2002;277:6504–6510.

    PubMed  CAS  Google Scholar 

  287. Ferlini C, Raspaglio G, Mozzetti S, et al. Bcl-2 down-regulation is a novel mechanism of paclitaxel resistance. Mol Pharmacol 2003; 64:51–58.

    PubMed  CAS  Google Scholar 

  288. Estève MA, Carré M, Bourgarel-Rey V, Kruczynski A, Raspaglio G, Ferlini C, Braguer D. Bcl-2 down-regulation and tubulin subtype composition are involved in resistance of ovarian cancer cells to vinflunine. Mol Cancer Ther 2006;5:1–10.

    Google Scholar 

  289. Rodi DJ, Janes RW, Sanganee HJ, Holton RA, Wallace BA, Makowski L. Screening of a library of phage-displayed peptides identifies human bcl-2 as a taxol-binding protein. J Mol Biol 1999;285: 197–203.

    PubMed  CAS  Google Scholar 

  290. Wu JH, Batist G, Zamir LO. A model for the interaction of paclitaxel with the Bcl-2 loop domain: a chemical approach to induce conformation-dependent phosphorylation. Anticancer Drug Des 2000; 15:441–446.

    PubMed  CAS  Google Scholar 

  291. Haldar S, Chintapalli J, Croce CM. Taxol induces bcl-2 phosphorylation and death of prostate cancer cells. Cancer Res 1996;56:1253–1255.

    PubMed  CAS  Google Scholar 

  292. Carre M, Andre N, Carles G, et al. Tubulin is an inherent component of mitochondrial membranes that interacts with the voltage-dependent anion channel. J Biol Chem 2002;277:33,664–33,669.

    PubMed  CAS  Google Scholar 

  293. Zambito AM, Wolff J. Plasma membrane localization of palmitoylated tubulin. Biochem Biophys Res Commun 2001;283:42–47.

    PubMed  CAS  Google Scholar 

  294. Palestini P, Pitto M, Tedeschi G, et al. Tubulin anchoring to glycolipid-enriched, detergent-resistant domains of the neuronal plasma membrane. J Biol Chem 2000;275:9978–9985.

    PubMed  CAS  Google Scholar 

  295. Xu K, Luduena RF. Characterization of nuclear betall-tubulin in tumor cells: a possible novel target for taxol. Cell Motil Cytoskeleton 2002;53:39–52.

    PubMed  CAS  Google Scholar 

  296. Chabin-Brion K, Marceiller J, Perez F, et al. The Golgi complex is a microtubule-organizing organelle. Mol Biol Cell 2001;12:2047–2060.

    PubMed  CAS  Google Scholar 

  297. Ferri KF, Kroemer G. Organelle-specific initiation of cell death pathways. Nat Cell Biol 2001;3: E255–E263.

    PubMed  CAS  Google Scholar 

  298. Zong WX, Li C, Hatzivassiliou G, et al. Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. J Cell Biol 2003;162:59–69.

    PubMed  CAS  Google Scholar 

  299. Scorrano L, Oakes SA, Opferman JT, et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 2003;300:135–139.

    PubMed  CAS  Google Scholar 

  300. Breckenridge DG, Germain M, Mathai JP, Nguyen M, Shore GC. Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 2003;22:8608–8618.

    PubMed  CAS  Google Scholar 

  301. Thomenius MJ, Wang NS, Reineks EZ, Wang Z, Distelhorst CW. Bcl-2 on the endoplasmic reticulum regulates Bax activity by binding to BH3-only proteins. J Biol Chem 2003;278:6243–6250.

    PubMed  CAS  Google Scholar 

  302. Kadi A, Pichard V, Lehmann M, et al. Effect of microtubule disruption on cell adhesion and spreading. Biochem Biophys Res Commun 1998;246:690–695.

    PubMed  CAS  Google Scholar 

  303. Zhou X, Li J, Kucik DF. The microtubule cytoskeleton participates in control of beta2 integrin avidity. J Biol Chem 2001;276:44,762–44,769.

    PubMed  CAS  Google Scholar 

  304. Niggli V. Microtubule-disruption-induced and chemotactic-peptide-induced migration of human neutrophils: implications for differential sets of signalling pathways. J Cell Sci 2003;116:813–822.

    PubMed  CAS  Google Scholar 

  305. Hu YL, Li S, Miao H, Tsou TC, del Pozo MA, Chien S. Roles of microtubule dynamics and small GTPase Rac in endothelial cell migration and lamellipodium formation under flow. J Vasc Res 2002;39:465–476.

    PubMed  CAS  Google Scholar 

  306. Belotti D, Vergani V, Drudis T, et al. The microtubule-affecting drug paclitaxel has antiangiogenic activity. Clin Cancer Res 1996;2:1843–1849.

    PubMed  CAS  Google Scholar 

  307. Griggs J, Metcalfe JC, Hesketh R. Targeting tumour vasculature: the development of combretastatin A4. Lancet Oncol 2001;2:82–87.

    PubMed  CAS  Google Scholar 

  308. Micheletti G, Poli M, Borsotti P, et al. Vascular-targeting activity of ZD6126, a novel tubulin-binding agent. Cancer Res 2003;63:1534–1537.

    PubMed  CAS  Google Scholar 

  309. Pasquier E, Carre M, Pourroy B, et al. Antiangiogenic activity of paclitaxel is associated with its cytostatic effect, mediated by the initiation but not completion of a mitochondrial apoptotic signaling pathway. Mol Cancer Ther 2004;3:1301–1310.

    PubMed  CAS  Google Scholar 

  310. Pasquier E, Honore S, Pourroy B, et al. Antiangiogenic concentrations of paclitaxel induce an increase in microtubule dynamics in endothelial cells but not in cancer cells. Cancer Res 2005;65: 2433–2440.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, Totowa, NJ

About this chapter

Cite this chapter

Carré, M., Braguer, D. (2008). Microtubule Damaging Agents and Apoptosis. In: Fojo, T. (eds) The Role of Microtubules in Cell Biology, Neurobiology, and Oncology. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-336-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-336-3_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-294-0

  • Online ISBN: 978-1-59745-336-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics