Skip to main content

Skin Aging and Microbiology

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fenske NA, Lober CW. Structural and functional changes of normal aging skin. J Am Acad Dermatol 1986;15:571–585.

    PubMed  CAS  Google Scholar 

  2. Roupe G. Skin of the aging human being. Lakartidningen 2001;98(10):1091–1095.

    PubMed  CAS  Google Scholar 

  3. Lovell CR, Smolenski KA, Duance VC, Light ND, Young S, Dyson M. Type I and III collagen content and fibre distribution in normal human skin during ageing. Br J Dermatol 1987;117:419–428.

    PubMed  CAS  Google Scholar 

  4. Uitto J. Understanding premature skin aging. N Engl J Med 1997;337:1463–1465.

    PubMed  CAS  Google Scholar 

  5. Lavker RM. Structural alterations in exposed and unexposed aged skin. J Invest Dermatol 1979;73:59–66.

    PubMed  CAS  Google Scholar 

  6. Yaar M, Gilchrest BA. Aging of Skin in Fitzpatrick's Dermatology in General Medicine. New York: McGraw-Hill, p 1700.

    Google Scholar 

  7. Geserick C, Blasco MA. Novel roles for telomerase in aging. Mech Ageing Dev 2006;127 (6):579–583.

    PubMed  CAS  Google Scholar 

  8. Boukamp P. Ageing mechanisms: the role of telomere loss. Clin Exp Dermatol 2001;26 (7):562–565.

    PubMed  CAS  Google Scholar 

  9. Bellon M, Nicot C. Regulation of telomerase and telomeres: human tumor viruses take control. J Natl Cancer Inst 2008;100(2):98–108.

    PubMed  CAS  Google Scholar 

  10. Pendino F, Tarkanyi I, Dudognon C, Hillion J, Lanotte M, Aradi J, Segal-Bendirdjian E. Telomeres and telomerase: pharmacological targets for new anticancer strategies? Curr Cancer Drug Targets 2006;(2):147–180.

    Google Scholar 

  11. Boukamp P. Skin aging: a role for telomerase and telomere dynamics? Curr Mol Med 2005;5 (2):71–77.

    Google Scholar 

  12. Nakamura K, Izumiyama-Shimomura N, Sawabe M, Arai T, Aoyagi Y, Fujiwara M, Tsuchiya E, Kobayashi Y, Kato M, Oshimura M, Sasajima K, Nakachi K, Takubo K. Comparative analysis of telomere lengths and erosion with age in human epidermis and lingual epithelium. J Invest Dermatol 2002;119(5):1014–1019.

    PubMed  CAS  Google Scholar 

  13. Bataille V, Kato BS, Falchi M, Gardner J, Kimura M, Lens M, Perks U, Valdes AM, Bennett DC, Aviv A, Spector TD. Nevus size and number are associated with telomere length and represent potential markers of a decreased senescence in vivo. Cancer Epidemiol Biomarkers Prev 2007;16(7):1499–1502.

    PubMed  CAS  Google Scholar 

  14. Kosmadaki MG, Gilchrest BA. The role of telomeres in skin aging/photoaging. Micron 2004;35(3):155–159.

    PubMed  CAS  Google Scholar 

  15. Lebel M, Leder P. A deletion within the murine Werner syndrome helicase induces sensitivity to inhibitors of topoisomerase and loss of cellular proliferative capacity. Proc Natl Acad Sci U S A 1998;95(22):13097–13102.

    PubMed  CAS  Google Scholar 

  16. Ahn B, Harrigan JA, Indig FE, Wilson DM III, Bohr VA. Regulation of WRN helicase activity in human base excision repair. J Biol Chem 2004;279(51):53465–53474.

    PubMed  CAS  Google Scholar 

  17. Poot M, Gollahon KA, Emond MJ, Silber JR, Rabinovitch PS. Werner syndrome diploid fibroblasts are sensitive to 4-nitroquinoline-N-oxide and 8-methoxypsoralen: implications for the disease phenotype. FASEB J 2002;16(7):757–758.

    PubMed  CAS  Google Scholar 

  18. Chang S, Multani AS, Cabrera NG, Naylor ML, Laud P, Lombard D, Pathak S, Guarente L, DePinho RA. Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat Genet 2004;36(8):877–882.

    PubMed  CAS  Google Scholar 

  19. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956;11:298–300.

    PubMed  CAS  Google Scholar 

  20. Pelle E, Maes D, Padulo GA, Kim EK, Smith WP. An in vitro model to test relative antioxidant potential: ultraviolet-induced lipid peroxidation in liposomes. Arch Biochem Biophys 1990;283:234–240.

    PubMed  CAS  Google Scholar 

  21. Werninghaus K. The role of antioxidants in reducing photodamage, in Gilchrest B (ed.) Photodamage. London: Blackwell Science, 1995, p 249.

    Google Scholar 

  22. Rikans LE, Hornbrook KR. Lipid peroxidation, antioxidant protection and aging. Biochim Biophys Acta 1997;1362:116–127.

    PubMed  CAS  Google Scholar 

  23. Hensley K, Floyd R. Reactive oxygen species and protein oxidation in aging: a look back, a look ahead. Arch Biochem Biophys 2002;397:377–383.

    PubMed  CAS  Google Scholar 

  24. Black HS. Potential involvement of free radical reactions in ultraviolet light-mediated cutaneous damage. Photochem Photobiol 1987;46:213–221.

    PubMed  CAS  Google Scholar 

  25. Verdier-Sévrain S, Bonté F, Gilchrest B. Biology of estrogens in skin: implications for skin aging. Exp Dermatol 2006;15:83–94.

    PubMed  Google Scholar 

  26. Creidi P, Faivre B, Agache P, Richard E, Haudiquet V, Sauvanet JP. Effect of a conjugated oestrogen (Premarin) cream on ageing facial skin A. comparative study with a placebo cream. Maturitas 1994;19:211–223.

    PubMed  CAS  Google Scholar 

  27. Dunn LB, Damesyn M, Moore AA, Reuben DB, Greendale GA. Does estrogen prevent skin aging? Results from the First National Health and Nutritional Examination Survey. Arch Dermatol 1997;133:339–342.

    PubMed  CAS  Google Scholar 

  28. Fisher GJ, Kang S, Varani J, Bata-Csorgo Z, Wan Y, Datta S, Voorhees JJ. Mechanisms of photoaging and chronological skin aging. Arch Dermatol 2002;138:1462–1470.

    PubMed  CAS  Google Scholar 

  29. Kligman AM, Kligman LH. Photoaging, in Freedberg IM, Eisen AZ, Wolff K, et al. (eds.) Fitzpatrick's Dermatology in General Medicine, 5th Ed., Vol. 1. New York: McGraw-Hill, 1999, pp 1717–1723.

    Google Scholar 

  30. Yao W, Malaviya R, Magliocco M, Gottlieb A. Topical treatment of UVB-irradiated human subjects with EGCG, a green tea polyphenol, increases caspase-3 activity in keratinocytes. J Am Acad Dermatol 2005;52:150.

    Google Scholar 

  31. Pinnell S, Lin F-Y, Grichnik J, et al. A topical antioxidant solution containing vitamin C, vitamin E, and ferulic acid prevents ultraviolet radiation induced caspase-3 induction in skin. JAAD 2005;2(52):158.

    Google Scholar 

  32. Bosset S, Bonnet-Duquennoy M, Barre P, Chalon A, Kurfurst R, Bonte F, Schnebert S, Le Varlet B, Nicolas JF. Photoageing shows histological features of chronic skin inflammation without clinical and molecular abnormalities. Br J Dermatol 2003;149(4):826–835.

    PubMed  CAS  Google Scholar 

  33. Kappes UP, Luo D, Potter M, Schulmeister K, Runger TM. Short- and long-wave UV light (UVB and UVA) induce similar mutations in human skin cells. J Invest Dermatol 2006;126 (3):667–675.

    PubMed  CAS  Google Scholar 

  34. Marrot L, Belaïdi JP, Meunier JR. Importance ofUVA photoprotection as shownby genotoxic related endpoints: DNA damage and p53 status. Mutat Res 2005;571(1–2):175–184.

    PubMed  CAS  Google Scholar 

  35. Sugimoto M, Yamashita R, Ueda M. Telomere length of the skin in association with chronological aging and photoaging. J Dermatol Sci 2006;43(1):43–47.

    PubMed  CAS  Google Scholar 

  36. Makrantonaki E, Zouboulis CC. Characteristics and pathomechanisms of endogenously aged skin. Dermatology 2007;214:352–360.

    PubMed  Google Scholar 

  37. Moragas A, Castells C, Sans M. Mathematical morphologic analysis of aging-related epidermal changes. Anal Quant Cytol Histol 1993;15:75–82.

    PubMed  CAS  Google Scholar 

  38. Lock-Andersen J, Therkildsen P, de Fine Olivarius F, Gniadecka M, Dahlstrom K, Poulsen T, Wulf HC. Epidermal thickness, skin pigmentation and constitutive photosensitivity. Photodermatol Photoimmunol Photomed 1997;13:153–158.

    CAS  Google Scholar 

  39. Whitton JT, Everall JD. The thickness of the epidermis. Br J Dermatol 1973;89:467–476.

    PubMed  CAS  Google Scholar 

  40. Sandby-Møller J, Poulsen T, Wulf HC. Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits. Acta Derm Venereol 2003;83:410–413.

    PubMed  Google Scholar 

  41. El-Domyati M, Attia S, Saleh F, Brown D, Birk DE, Gasparro F, Ahmad H, Uitto J. Intrinsic aging vs. photoaging: a comparative histopathological, immunohistochemical, and ultra-structural study of skin. Exp Dermatol 2002;11(5):398–405.

    PubMed  CAS  Google Scholar 

  42. Contet-Audonneau JL, Jeanmaire C, Pauly G. A histological study of human wrinkle structures: comparison between sun-exposed areas of the face, with or without wrinkles, and sun-protected areas. Br J Dermatol 1999;140:1038–1047.

    PubMed  CAS  Google Scholar 

  43. Katzberg AA. The area of the dermo-epidermal junction in human skin. Anat Rec 1958;131:717–721.

    Google Scholar 

  44. Yaar M, Gilchrest BA. Aging of Skin in Fitzpatrick's Dermatology in General Medicine. New York: McGraw-Hill, pp 1697–1706.

    Google Scholar 

  45. Kligman AM. Perspectives and problems in cutaneous gerontology. J Invest Dermatol 1979;73:39–46.

    PubMed  CAS  Google Scholar 

  46. Orentreich N, Selmanowitz VJ. Levels of biological functions with aging. Trans NY Acad Sci 1969;31:992–998.

    Google Scholar 

  47. Grewe M. Chronological ageing and photoageing of dendritic cells. Clin Exp Dermatol 2001;26:608–612.

    PubMed  CAS  Google Scholar 

  48. Fisher GJ, Wang ZQ, Datta SC, Varani J, Kang S, Voorhees JJ. Pathophysiology of premature skin aging induced by ultraviolet light. N Engl J Med 1997;337:1419–1428.

    PubMed  CAS  Google Scholar 

  49. Kligman AM, Zheng P, Lavker RM. The anatomy and pathogenesis of wrinkles. Br J Dermatol 1985;113:37–42.

    PubMed  CAS  Google Scholar 

  50. Gniadecka M, Nielsen OF, Wessel S, Heidenheim M, Christensen DH, Wulf HC. Water and protein structure in photoaged and chronically aged skin. J Invest Dermatol 1998;111: 1129–1133.

    PubMed  CAS  Google Scholar 

  51. Oikarinen A. The aging of skin: chronoaging versus photoaging. Photodermatol Photoim-munol Photomed 1990;7:3–4.

    CAS  Google Scholar 

  52. Shuster S, Black MM, McVitie E. The influence of age and sex on skin thickness, skin collagen and density. Br J Dermatol 1975;93:639–643.

    PubMed  CAS  Google Scholar 

  53. Montagna W, Carlisle K. Structural changes in aging human skin. J Invest Dermatol 1979;73:47–53.

    PubMed  CAS  Google Scholar 

  54. Griffiths CE, Russman AN, Majmudar G, Singer RS, Hamilton TA, Voorhees JJ. Restoration of collagen formation in photodamaged human skin by tretinoin (retinoic acid). N Engl J Med 1993;329:530–535.

    PubMed  CAS  Google Scholar 

  55. Craven NM, Watson RE, Jones CJ, Shuttleworth CA, Kielty CM, Griffiths CE. Clinical features of photodamaged human skin are associated with a reduction in collagen VII. Br J Dermatol 1997;137:344–350.

    PubMed  CAS  Google Scholar 

  56. Rittie L, Fisher GJ. UV-light-induced signal cascades and skin aging. Ageing Res Rev 2002;1(4):705–720.

    PubMed  CAS  Google Scholar 

  57. Varani J, Warner RL, Gharaee-Kermani M, Phan SH, Kang S, Chung JH, Wang ZQ, Datta SC, Fisher GJ, Voorhees JJ. Vitamin A antagonizes decreased cell growth and elevated collagen-degrading matrix metalloproteinases and stimulates collagen accumulation in naturally aged human skin. J Invest Dermatol 2000;114:480–486.

    PubMed  CAS  Google Scholar 

  58. Fisher GJ, Datta SC, Talwar HS, Wang ZQ, Varani J, Kang S, Voorhees JJ. Molecular basis of sun-induced premature skin ageing and retinoid antagonism. Nature 1996;379:335–339.

    PubMed  CAS  Google Scholar 

  59. Mitchel RE. Chronic solar dermatosis: a light and electron microscopic study of the dermis. J Invest Dermatol 1967;48:203–211.

    Google Scholar 

  60. Tsuji T, Hamada T. Age-related changes in human dermal elastic fibers. Br J Dermatol 1981;105:57–63.

    PubMed  CAS  Google Scholar 

  61. Scharffetter-Kochanek K, Brenneisen P, Wenk J, Herrmann G, Ma W, Kuhr L, Meewes C, Wlaschek M. Photoaging of the skin from phenotype to mechanisms. Exp Gerontol 2000;35:307–316.

    PubMed  CAS  Google Scholar 

  62. Matsuoka L, Uitto J. Alterations in the elastic fibers in cutaneous aging and solar elastosis, in Balin A, Kligman AM (eds.) Aging and the Skin. New York: Raven Press, 1989, pp 141–151.

    Google Scholar 

  63. Lavker RM. Cutaneous aging: chronologic versus photoaging, in Gilchrest BA (eds.) Photo-damage, 1st Ed. Cambridge, MA: Blackwell Science, 1995, p 128.

    Google Scholar 

  64. Escoffier C, de Rigal J, Rochefort A, Vasselet R, Lévêque JL, Agache PG. Age-related mechanical properties of human skin: an in vivo study. J Invest Dermatol 1989;93:353–357.

    PubMed  CAS  Google Scholar 

  65. Ghersetich I, Lotti T, Campanile G, Grappone C, Dini G. Hyaluronic acid in cutaneous intrinsic aging. Int J Dermatol 1994;33:119–122.

    PubMed  CAS  Google Scholar 

  66. Pearce RH, Grimmer BJ. Age and the chemical constitution of normal human dermis. J Invest Dermatol 1972;58:347–361.

    PubMed  CAS  Google Scholar 

  67. Elsner P, Maibach HI. Cosmeceuticals and Active Cosmetics: Drugs versus Cosmetics. 2nd Ed. Dekker: New York, 2005.

    Google Scholar 

  68. Bernstein EF, Underhill CB, Hahn PJ, Brown DB, UittoJ. Chronic sun exposure alters both the content and distribution of dermal glycosaminoglycans. Br J Dermatol 1996;135:255–262.

    PubMed  CAS  Google Scholar 

  69. Tammi R, Säämänen AM, Maibach HI, Tammi M. Degradation of newly synthesized high molecular mass hyaluronan in the epidermal and dermal compartments of human skin in organ culture. J Invest Dermatol 1991;97(1):126–130.

    PubMed  CAS  Google Scholar 

  70. Sakai S, Yasuda R, Sayo T, Ishikawa O, Inoue S. Hyaluronan exists in the normal stratum corneum. J Invest Dermatol 2000;114(6):1184–1187.

    PubMed  CAS  Google Scholar 

  71. Rieger M. Hyaluronic acid in cosmetics. Cosm Toil 1998;113(3):35–42.

    CAS  Google Scholar 

  72. Ortonne JP. Pigmentary changes of the ageing skin. Br J Dermatol 1990;122:21–28.

    PubMed  Google Scholar 

  73. Gilchrest BA, Stoff JS, Soter NA. Chronologic aging alters the response to ultraviolet-induced inflammation in human skin. J Invest Dermatol 1982;79:11–15.

    PubMed  CAS  Google Scholar 

  74. Ghadially R, Brown BE, Sequeira-Martin SM, Feingold KR, Elias PM. The aged epidermal permeability barrier. Structural, functional, and lipid biochemical abnormalities in humans and a senescent murine model. J Clin Invest 1995;95:2281–2290.

    PubMed  CAS  Google Scholar 

  75. Tezuka T, Qing J, Saheki M, Kusuda S, Takahashi M. Terminal differentiation of facial epidermis of the aged: immunohistochemical studies. Dermatology 1994;188:21–24.

    PubMed  CAS  Google Scholar 

  76. Nelson BR, Majmudar G, Griffiths CE, Gillard MO, Dixon AE, Tavakkol A, Hamilton TA, Woodbury RA, Voorhees JJ, Johnson TM. Clinical improvement following dermabrasion of photoaged skin correlates with synthesis of collagen I. Arch Dermatol 1994;130:1136–1142.

    PubMed  CAS  Google Scholar 

  77. Ostler EL, Wallis CV, Aboalchamat B, Faragher RG. Telomerase and the cellular lifespan: implications of the aging process. J Pediatr Endocrinol Metab 2000;6:1467–1476.

    Google Scholar 

  78. Kang S, Voorhees JJ. Photoaging therapy with topical tretinoin: an evidence-based analysis. J Am Acad Dermatol 1998;39(2 pt 3):S55–S61.

    PubMed  CAS  Google Scholar 

  79. Gilchrest BA. Treatment of photodamage with topical tretinoin: an overview. J Am Acad Dermatol 1997;36(3 pt 2):S27–S36.

    PubMed  CAS  Google Scholar 

  80. Fisher GJ, Voorhees JJ. Molecular mechanisms of photoaging and its prevention by retinoic acid: ultraviolet irradiation induces MAP kinase signal transduction cascades that induce AP-1-regulated matrix metalloproteinases that degrade human skin in vivo. J Investig Dermatol Symp Proc 1998;3:61–68.

    PubMed  CAS  Google Scholar 

  81. Baumann L. How to prevent photoaging? J Invest Dermatol 2005;125(4):xii–xiii.

    PubMed  CAS  Google Scholar 

  82. Nusgens BV, Humbert P, Rougier A, Colige AC, Haftek M, Lambert CA, Richard A, Creidi P, Lapiere CM. Topically applied vitamin C enhances the mRNA level of collagens I and III, their processing enzymes and tissue inhibitor of matrix metalloproteinase 1 in the human dermis. J Invest Dermatol 2001;116(6):853–859.

    PubMed  CAS  Google Scholar 

  83. Kockaert M, Neumann M. Systemic and topical drugs for aging skin. J Drugs Dermatol 2003;2(4):435–441.

    PubMed  Google Scholar 

  84. Margelin D, Medaisko C, Lombard D, Picard J, Fourtanier A. Hyaluronic acid and dermatan sulfate are selectively stimulated by retinoic acid in irradiated and nonirradiated hairless mouse skin. J Invest Dermatol 1996;106(3):505–509.

    PubMed  CAS  Google Scholar 

  85. Tajima S, Hayashi A, Suzuki T. Elastin expression is up-regulated by retinoic acid but not by retinol in chick embryonic skin fibroblasts. J Dermatol Sci 1997;15(3):166–172.

    PubMed  CAS  Google Scholar 

  86. Matheson AJ, Perry CM. Glucosamine: a review of its use in the management of osteoarthritis. Drugs Aging 2003;20(14):1041–1060.

    PubMed  CAS  Google Scholar 

  87. Fitzpatrick RE. Endogenous growth factors as cosmeceuticals. Dermatol Surg 2005;31(7 pt 2):827–831; discussion 831.

    PubMed  CAS  Google Scholar 

  88. Kang S, Chung JH, Lee JH, Fisher GJ, Wan YS, Duell EA, Voorhees JJ. Topical N-acetyl cysteine and genistein prevent ultraviolet-light-induced signaling that leads to photoaging in human skin in vivo. J Invest Dermatol 2003;120(5):835–841.

    PubMed  CAS  Google Scholar 

  89. Greul AK, Grundmann JU, Heinrich F, Pfitzner I, Bernhardt J, Ambach A, Biesalski HK, Gollnick H. Photoprotection of UV-irradiated human skin: an antioxidative combination of vitamins E and C, carotenoids, selenium and proanthocyanidins. Skin Pharmacl Appl Skin Physiol 2002;15(5):307–315.

    CAS  Google Scholar 

  90. Passi S, De Pita O, Grandinetti M, Simotti C, Littaru GP. The combined use of oral and topical lipophilic antioxidants increases their levels both in sebum and stratum corneum. Biofactors 2003;18(1–4):289–297.

    PubMed  CAS  Google Scholar 

  91. Lin FH, Lin JY, Gupta RD, Tournas JA, Burch JA, Selim MA, Monteiro-Riviere NA, Grichnik JM, Zielinski J, Pinnell SR. Ferulic acid stabilizes a solution of vitamins C and E and doubles its photoprotection of skin. J Invest Dermatol 2005;125(4):826–832.

    PubMed  CAS  Google Scholar 

  92. Conney AH, Lu YP, Lou YR, Huang MT. Inhibitory effects of tea and caffeine on UV-induced carcinogenesis: relationship to enhanced apoptosis and decreased tissue fat. Eur J Cancer Prev 2002;11:S28–S36.

    PubMed  Google Scholar 

  93. Lu YP, Lou YR, Xie JG, Peng QY, Liao J, Yang CS, Huang MT, Conney AH. Topical applications of caffeine or (−)-epigallocatechin gallate (EGCG) inhibit carcinogenesis and selectively increase apoptosis in UVB-induced skin tumors in mice. Proc Natl Acad Sci USA 2002;99:12455–12460.

    PubMed  CAS  Google Scholar 

  94. Koo SW, Hirakawa S, Fujii S, Kawasumi M, Nghiem P. Protection from photodamage by topical application of caffeine after ultraviolet irradiation. Br J Dermatol 2007;156: 957–964.

    PubMed  CAS  Google Scholar 

  95. Papucci L, Schiavone N, Witort E, Donnini M, Lapucci A, Tempestini A, Formigli L, Zecchi-Orlandini S, Orlandini G, Carella G, Brancato R, Capaccioli S. Coenzyme q10 prevents apoptosis by inhibiting mitochondrial depolarization independently of its free radical scavenging property. J Biol Chem 2003;278(30):28220–28228.

    PubMed  CAS  Google Scholar 

  96. Beyer RE, Ernster L. The antioxidant role of coenzyme Q, in Lenaz G, et al. (eds.) Highlights in Ubiquinone Research. London: Taylor and Francis, 1990, pp 191–213.

    Google Scholar 

  97. Bourne LC, Rice-Evans C. Bioavailability of ferulic acid. Biochem Biophys Res Commun 1998;253:222–227.

    PubMed  CAS  Google Scholar 

  98. Svobodova A, Psotova J, Walterova D. Natural phenolics in the prevention of UV-induced skin damage. A review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2003;147: 137–145.

    PubMed  CAS  Google Scholar 

  99. Graf E. Antioxidant potential of ferulic acid. Free Radic Biol Med 1992;13:435–448.

    PubMed  CAS  Google Scholar 

  100. Bonina F, Puglia C, Ventura D, Aquino R, Tortora S, Sacchi A, Saija A, Tomaino A, Pellegrino ML, de Caprariis P. In vitro antioxidant and in vivo photoprotective effects of a lyophilized extract of Capparis spinosa L buds. J Cosmet Sci 2002;53:321–335.

    PubMed  CAS  Google Scholar 

  101. Saija A, Tomaino A, Trombetta D, De Pasquale A, Uccella N, Barbuzzi T, Paolino D, Bonina F. In vitro and in vivo evaluation of caffeic and ferulic acids as topical photoprotective agents. Int J Pharm 2000;199:39–47.

    PubMed  CAS  Google Scholar 

  102. Tournas JA, Lin FH, Burch JA, Selim MA, Monteiro-Riviere NA, Zielinski JE, Pinnell SR. Ubiquinone, idebenone, and kinetin provide ineffective photoprotection to skin when compared to a topical antioxidant combination of vitamins C and E with ferulic acid. J Invest Dermatol 2006;126:1185–1187.

    PubMed  CAS  Google Scholar 

  103. Mills S, Bone K. Principles and Practice of Phytotherapy: Modern Herbal Medicine. London: Churchill Livingstone, 2000.

    Google Scholar 

  104. Won YK, Ong CN, Shi X, Shen HM. Chemopreventive activity of parthenolide against UVB-induced skin cancer and its mechanisms. Carcinogenesis 2004;25:1449–1458.

    PubMed  CAS  Google Scholar 

  105. Herrera F, Martin V, Rodriguez-Blanco J, García-Santos G, Antolín I, Rodriguez C. Intra-cellular redox state regulation by parthenolide. Biochem Biophys Res Commun 2005; 332:321–325.

    PubMed  CAS  Google Scholar 

  106. Sweeney CJ, Mehrotra S, Sadaria MR, Kumar S, Shortle NH, Roman Y, Sheridan C, Campbell RA, Murry DJ, Badve S, Nakshatri H. The sesquiterpene lactone parthenolide in combination with docetaxel reduces metastasis and improves survival in a xenograft model of breast cancer. Mol Cancer Ther 2005;4:1004–1012.

    PubMed  CAS  Google Scholar 

  107. Tanaka K, Hasegawa J, Asamitsu K, Okamoto T. Prevention of the ultraviolet B-mediated skin photoaging by a nuclear factor kappaB inhibitor, parthenolide. J Pharmacol Exp Ther 2005; 315:624–630.

    PubMed  CAS  Google Scholar 

  108. Katiyar SK, Ahmad N, Mukhtar H. Green tea and skin. Arch Dermatol 2000;136:989–994.

    PubMed  CAS  Google Scholar 

  109. Wright TI, Spencer JM, Flowers FP. Chemoprevention of nonmelanoma skin cancer. J Am Acad Dermatol 2006;54:933–946.

    PubMed  Google Scholar 

  110. Yusuf N, Irby C, Katiyar SK, Elmets CA. Photoprotective effects of green tea polyphenols. Photodermatol Photoimmunol Photomed 2007;23:48–56.

    PubMed  Google Scholar 

  111. Middlekamp-Hup MA, Pathak MA, Parrado C, Garcia-Caballero T, Rius-Diaz F, Fitzpatrick TB, Gonzalez S. Orally administered Polypodium leucotomos extract decreases psoralen-UVA-induced phototoxicity, pigmentation, and damage of human skin. J Am Acad Dermatol 2004;50(1):41–49.

    Google Scholar 

  112. Middlekamp-Hup MA, Pathak MA, Parrado C, Goukassian D, Rius-Diaz F, Mihm MC, Fitzpatrick TB, Gonzalez S. Oral Polypodium leucotomos extract decreases ultraviolet-induced damage of human skin. J Am Acad Dermatol 2004;51(6):910–918.

    Google Scholar 

  113. Philips N, Smith J, Keller T, Gonzalez S. Predominant effects of Polypodium leucotomos on membrane integrity, lipid peroxidation, and expression of elastin and matrixmetalloprotei-nase-1 in ultraviolet radiation exposed fibroblasts, and keratinocytes. J Dermatol Sci 2003;32 (1):1–9.

    PubMed  CAS  Google Scholar 

  114. Sime S, Reeve VE. Protection from inflammation, immunosuppression and carcinogenesis induced by UV radiation in mice by topical. Pycnogenol Photochem Photobiol 2004;79 (2):193–198.

    CAS  Google Scholar 

  115. Saliou C, Rimbach G, Moini H, McLaughlin L, Hosseini S, Lee J, Watson RR, Packer L. Solar ultraviolet-induced erythema in human skin and nuclear factor-kappa-B-dependent gene expression in keratinocytes are modulated by a French maritime pine bark extract. Free Radic Biol Med 2001;30(2):154–160.

    PubMed  CAS  Google Scholar 

  116. Bito T, Roy S, Sen CK, Packer L. Pine bark extract pycnogenol downregulates IFN-gamma-induced adhesion of T cells to human keratinocytes by inhibiting inducible ICAM-1 expression. Free Radic Biol Med 2000;28(2):219–227.

    PubMed  CAS  Google Scholar 

  117. Chen CY, Jang JH, Li MH, Surh YJ. Resveratrol upregulates heme oxygenase-1 expression via activation of NF-E2-related factor 2 in PC12 cells. Biochem Biophys Res Commun 2005;331:993–1000.

    PubMed  CAS  Google Scholar 

  118. She QB, Bode AM, Ma WY, Chen NY, Dong Z. Resveratrol-induced activation of p53 and apoptosis is mediated by extracellular-signal-regulated protein kinases and p38 kinase. Cancer Res 2001;61:1604–1610.

    PubMed  CAS  Google Scholar 

  119. Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, Fong HH, Farnsworth NR, Kinghorn AD, Mehta RG, Moon RC, Pezzuto JM. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 1997;275:218–220.

    PubMed  CAS  Google Scholar 

  120. Afaq F, Adhami VM, Ahmad N. Prevention of short-term ultraviolet B radiation-mediated damages by resveratrol in SKH-1 hairless mice. Toxicol Appl Pharmacol 2003;186:28–37.

    PubMed  CAS  Google Scholar 

  121. Chan MM. Antimicrobial effect of resveratrol on dermatophytes and bacterial pathogens of the skin. Biochem Pharmacol 2002;63:99–104.

    PubMed  CAS  Google Scholar 

  122. Ding XZ, Adrian TE. Resveratrol inhibits proliferation and induces apoptosis in human pancreatic cancer cells. Pancreas 2002;25:e71–e76.

    PubMed  Google Scholar 

  123. Delmas D, Rébé C, Lacour S, Filomenko R, Athias A, Gambert P, Cherkaoui-Malki M, Jannin B, Dubrez-Daloz L, Latruffe N, Solary E. Resveratrol-induced apoptosis is associated with Fas redistribution in the rafts and the formation of a death-inducing signaling complex in colon cancer cells. J Biol Chem 2003;278:41482–41490.

    PubMed  CAS  Google Scholar 

  124. Aziz MH, Afaq F, Ahmad N. Prevention of ultraviolet-B radiation damage by resveratrol in mouse skin is mediated via modulation in survivin. Photochem Photobiol 2005;81:25–31.

    PubMed  CAS  Google Scholar 

  125. Aziz MH, Reagan-Shaw S, Wu J, Longley BJ, Ahmad N. Chemoprevention of skin cancer by grape constituent resveratrol: relevance to human disease? FASEB J 2005;19:1193–1195.

    PubMed  CAS  Google Scholar 

  126. Darshan S, Doreswamy R. Patented antiinflammatory plant drug development from traditional medicine. Phytother Res 2004;18:343–357.

    PubMed  CAS  Google Scholar 

  127. Aburjai T, Natsheh FM. Plants used in cosmetics. Phytother Res 2003;17:987–1000.

    PubMed  Google Scholar 

  128. Saito Y, Shiga A, Yoshida Y, Furuhashi T, Fujita Y, Niki E. Effects of a novel gaseous antioxidative system containing a rosemary extract on the oxidation induced by nitrogen dioxide and ultraviolet radiation. Biosci Biotechnol Biochem 2004;68:781–786.

    PubMed  CAS  Google Scholar 

  129. Ho CT, Wang M, Wei GJ, Huang TC, Huang MT. Chemistry and antioxidative factors in rosemary and sage. Biofactors 2000;13:161–166.

    PubMed  CAS  Google Scholar 

  130. Sancheti G, Goyal P. Modulatory influence of Rosemarinus officinalis on DMBA-induced mouse skin tumorigenesis. Asian Pac J Cancer Prev 2006;7:331–335.

    PubMed  Google Scholar 

  131. Sancheti G, Goyal PK. Effect of Rosmarinus officinalis in modulating 7,12-dimethylbenz(a) anthracene induced skin tumorigenesis in mice. Phytother Res 2006;20:981–986.

    PubMed  Google Scholar 

  132. Offord EA, Gautier JC, Avanti O, Scaletta C, Runge F, Krämer K, Applegate LA. Photo-protective potential of lycopene, beta-carotene, vitamin E, vitamin C and carnosic acid in UVA-irradiated human skin fibroblasts. Free Radic Biol Med 2002;32:1293–1303.

    PubMed  CAS  Google Scholar 

  133. Chiu A, Kimball AB. Topical vitamins, minerals and botanical ingredients as modulators of environmental and chronological skin damage. Br J Dermatol 2003;149:681–691.

    PubMed  CAS  Google Scholar 

  134. Calabrese V, Scapagnini G, Catalano C, Dinotta F, Geraci D, Morganti P. Biochemical studies of a natural antioxidant isolated from rosemary and its application in cosmetic dermatology. Int J Tissue React 2000;22:5–13.

    PubMed  CAS  Google Scholar 

  135. Calabrese V, Scapagnini G, Catalano C, Bates TE, Dinotta F, Micali G, Giuffrida Stella AM. Induction of heat shock protein synthesis in human skin fibroblasts in response to oxidative stress: regulation by a natural antioxidant from rosemary extract. Int J Tissue React 2001;23:51–58.

    PubMed  CAS  Google Scholar 

  136. Katiyar SK. Silymarin and skin cancer prevention: anti-inflammatory, antioxidant and immunomodulatory effects (Review). Int J Oncol 2005;26(1):169–176.

    PubMed  CAS  Google Scholar 

  137. Zhao J, Agarwal R. Tissue distribution of silibinin, the major active constituent of silymarin, in mice and its association with enhancement of phase II enzymes: implications in cancer chemoprevention. Carcinogenesis 1999;20(11):2101–2108.

    PubMed  CAS  Google Scholar 

  138. Dhanalakshmi S, Mallikarjuna GU, Singh RP, Agarwal R. Silibinin prevents ultraviolet radiation-caused skin damages in SKH-1 hairless mice via a decrease in thymine dimer positive cells and an up-regulation of p53–p21/Cip1 in epidermis. Carcinogenesis 2004;25 (8):1459–1465.

    PubMed  CAS  Google Scholar 

  139. Gallagher RP, Rivers JK, Lee TK, Bajdik CD, McLean DI, Coldman AJ. Broad-spectrum sunscreen use and the development of new nevi in white children: a randomized controlled trial. JAMA 2000;283:2955.

    PubMed  CAS  Google Scholar 

  140. Schröder JM, Harder J. Innate antimicrobial peptides in the skin. Med Sci Paris 2006;22 (2):153–157.

    PubMed  Google Scholar 

  141. Nizet V, Ohtake T, Lauth X, Trowbridge J, Rudisill J, Dorschner RA, Pestonjamasp V, Piraino J, Hutter K, Gallo RL. Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 2001;414:454–457.

    PubMed  CAS  Google Scholar 

  142. Elsner P. Antimicrobials and the skin physiological and pathological flora. Curr Probl Dermatol 2006;33:35–41.

    PubMed  CAS  Google Scholar 

  143. Harder J, Schröder JM. Antimicrobial peptides in human skin. Chem Immunol Allergy 2005;86:22–41.

    PubMed  CAS  Google Scholar 

  144. Ehlers C, Ivens UI, Møller ML, Senderovitz T, Serup J. Females have lower skin surface pH than men: a study on the influence of gender, forearm site variation, right/left difference and time of the day on the skin surface pH. Skin Res Technol 2001;7(2):90–94.

    PubMed  CAS  Google Scholar 

  145. Noble WC. Carriage of micro-organisms on the skin, in Newsom SWB, Caldwell ADS (eds.) Problems in the Control of Hospital Infection. London: Royal Society of Medicine, 1980, pp 7–10.

    Google Scholar 

  146. Mackowiak PA. The normal microbial flora. N Engl J Med 1982;307:83–93.

    PubMed  CAS  Google Scholar 

  147. Price PB. The bacteriology of normal skin; a new quantitative test applied to a study of the bacterial flora and disinfectant action of mechanical cleansing. J Infect Dis 1938;63: 301–318.

    Google Scholar 

  148. Williamson P, Kligman AM. A new method for the quantitative investigation of cutaneous bacteria. J Invest Dermatol 1965;45(6):498–503.

    PubMed  CAS  Google Scholar 

  149. Marples MJ. The Ecology of Human Skin. Springfield, IL: Thomas CC Publisher, 1965.

    Google Scholar 

  150. Noble WC, Somerville CA. Microbiology of Human Skin. Philadelphia: Saunders, 1974, pp 50–76, 131, 212.

    Google Scholar 

  151. Kligman AM. The bacteriology of normal skin, in Maibach HI, Hildick-Smith G (eds.) Skin Bacteria and Their Role in Infection. New York: McGraw-Hill, 1965, pp 13–31.

    Google Scholar 

  152. Hartmann AA. A comparative investigation of methods for sampling skin flora. Arch Dermatol Res 1982;274:381–385.

    PubMed  CAS  Google Scholar 

  153. Marples RR. Sex, constancy, and skin bacteria. Arch Dermatol 1982;272:317–320.

    CAS  Google Scholar 

  154. Wilburg J, Kasprowicz A, Heczko PB. Composition of normal bacterial flora of human skin in relation to the age and sex of examined persons. Przegl Dermatol 1984;71(6):551–557.

    PubMed  CAS  Google Scholar 

  155. Larson EL, Cronquist AB, Whittier S, Lai L, Lyle CT, Latta PD. Differences in skin flora between inpatients and chronically ill outpatients. Heart Lung 2000;29:298–305.

    PubMed  CAS  Google Scholar 

  156. Rebel G, Pillsbury DM, Phalle G, de Saint M, Ginsberg D. Factors affecting the rapid disappearance of bacteria placed on the normal flora. J Invest Dermatol 1950;14:247–263.

    Google Scholar 

  157. Aly R, Shirley C, Cunico B, Maibach HI. Effect of prolonged occlusion on the microbial flora, pH, C02 and transepidermal water loss. J Invest Dermatol 1978;71:378–381.

    PubMed  CAS  Google Scholar 

  158. Sarkany I, Gaylarde CC. Bacterial colonisation of the skin of the newborn. J Pathol Bacteriol 1968;95:115–122.

    PubMed  CAS  Google Scholar 

  159. Thestrup-Pedersen K. Bacteria and the skin: clinical practice and therapy update. Br J Dermatol 1998;13953:1–3.

    Google Scholar 

  160. Medves JM, O'Brien B. Does bathing newborns remove potentially harmful pathogens from the skin? Birth 2001;28(3):161–165.

    PubMed  CAS  Google Scholar 

  161. Ashbee HR, Leck AK, Puntis JW, Parsons WJ, Evans EG. Skin colonisation by Malassezia in neonates and infants Infect Control Hosp Epidemiol 2002;23:212–216.

    Google Scholar 

  162. Juncosa Morros T, González-Cuevas A, Alayeto Ortega J, Muñoz Almagro C, Moreno Hernando J, Gené Giralt A, Latorre Otín C. Cutaneous colonization by Malassezia spp. in neonates. An Esp Pediatr 2002;57(5):452–456.

    PubMed  CAS  Google Scholar 

  163. Venkatesh MP, Placencia F, Weisman LE. Coagulase-negative staphylococcal infections in the neonate and child: an update. Semin Pediatr Infect Dis 2006;17(3):120–127.

    PubMed  Google Scholar 

  164. Leyden JJ, McGinley KJ, Mills OH, Kligman AM. Age-related changes in the resident bacterial flora of the human face. J Invest Dermatol 1975;65(4):379–381.

    PubMed  CAS  Google Scholar 

  165. Sultana B, Cimiotti J, Aiello AE, Sloan D, Larson E. Effects of age and race on skin condition and bacterial counts on hands of neonatal ICU nurses. Heart Lung 2003;32 (4):283–289.

    PubMed  Google Scholar 

  166. Foca K, Jakob S, Whittier P, Della-Latta S, Factor D, Rubenstein, Saiman L. Endemic Pseudomonas aeruginosa infection in a neonatal intensive care unit. N Engl J Med 2000;343:695–700.

    PubMed  CAS  Google Scholar 

  167. Lindberg E, Ingegerd Adlerberth I, Hesselmar B, Saalman R, Inga-Lisa Strannegård I-L, Åberg N, Wold AE. High rate of transfer of Staphylococcus aureus from parental skin to infant gut flora. Clin Microbiol 2004;42(2):530–534.

    Google Scholar 

  168. Webster GF. Skin microecology: the old and the new. Arch Dermatol 2007;143(1):105–106.

    PubMed  Google Scholar 

  169. Kloos WE, Schleifer KH. Simplified scheme for routine identification of human Staphylo-coccus species. J Clin Microbiol 1975;1(1):82–88.

    PubMed  CAS  Google Scholar 

  170. Frank DN, Spiegelman GB, Davis W, Wagner E, Lyons E, Pace NR. Culture-independent molecular analysis of microbial constituents of the healthy human outer ear. J Clin Microbiol 2003;41:295–303.

    PubMed  CAS  Google Scholar 

  171. Dekio I, Hayashi H, Sakamoto M, Kitahara M, Nishikawa T, Suematsu M, Benno Y. Detection of potentially novel bacterial components of the human skin microbiota using culture-independent molecular profiling. J Med Microbiol 2005;54;1231–1238.

    PubMed  CAS  Google Scholar 

  172. Gao Z, Tseng CH, Pei Z et al. Molecular analysis of human forearm superficial skin bacterial biota. Proc Natl Acad Sci USA 2007;104:2927–2932.

    PubMed  CAS  Google Scholar 

  173. Vuong C, Otto M. Staphylococcus epidermidis infections. Microbes Infect 2002;4:481–489.

    PubMed  Google Scholar 

  174. Harmory BH, Parisi JT. Staphylococcus epidermidis: a significant nosocomial pathogen. J Infect Control 1987;15:59–74.

    Google Scholar 

  175. Fekety FR Jr. The epidemiology and prevention of staphylococcal infection. Medicine 1964;43:593–613.

    Google Scholar 

  176. Nagase N, Sasaki A, Yamashita K, Shimizu A, Wakita Y, Kitai S, Kawano J. Isolation and species distribution of staphylococci from animal and human skin. J Vet Med Sci 2002;64 (3):245–250.

    PubMed  Google Scholar 

  177. Barth JH. Nasal carriage of staphylococci and streptococci. Int J Dermatol 1987;26:24–26.

    PubMed  CAS  Google Scholar 

  178. Solberg CO. Spread of Staphylococcus aureus in hospitals: causes and prevention. Scand J Infect Dis 2000;32:587–595.

    PubMed  CAS  Google Scholar 

  179. Kloos WE, Musselwhite MS. Distribution and persistence of Staphylococcus and Micrococcus species and other aerobic bacteria on human skin. Appl Microbiol 1975; 30:381–395.

    PubMed  CAS  Google Scholar 

  180. Nobel WC. Microbiology of Human Skin. London: Lloyd-Luke, 1981, p 433.

    Google Scholar 

  181. Seifert H, Dijkshoorn L, Gerner-Smidt P, Pelzer N, Tjernberg I, Vaneechoutte M. Distribution of Acinetobacter species on human skin: comparison of phenotypic and genotypic identification methods. J Clin Microbiol 1997;53:2819–2825.

    Google Scholar 

  182. Berlau J, Aucken H, Malnick H, Pitt T. Distribution of Acinetobacter species on skin of healthy humans. Eur J Clin Microbiol Infect Dis 1999;18:179–183.

    PubMed  CAS  Google Scholar 

  183. Ashbee HR. Update on the genus Malassezia. Med Mycol 2007;45(4):287–303.

    PubMed  CAS  Google Scholar 

  184. Paulino LC, Tseng C-H, Strober BE, Blaser MJ. Molecular analysis of fungal microbiota in samples from healthy human skin and psoriatic lesions. J Clin Microbiol 2006; 44:2933–2941.

    PubMed  CAS  Google Scholar 

  185. Gupta AK, Kohli Y. Prevalence of Malassezia species on various body sites in clinically healthy subjects representing different age groups. Med Mycol 2004;10:125–159.

    Google Scholar 

  186. Lee YW, Yim SM, Lim SH, Choe YB, Ahn KJ. Quantitative investigation on the distribution of Malassezia species on healthy human skin in Korea. Mycoses 2006;49(5):405–410.

    PubMed  CAS  Google Scholar 

  187. Leyden JJ, McGinley KJ, Nordstrom KM, Webster GF. Skin microflora. J Invest Dermatol 1987;88:65s–72s.

    PubMed  CAS  Google Scholar 

  188. McGinley KJ, Leyden JJ, Marples RR, Kligman AM. Quantitative microbiology of the scalp in non-dandruff, dandruff, and seborrheic dermatitis. J Invest Dermatol 1975;64(6):401–405.

    PubMed  CAS  Google Scholar 

  189. Chamberlain AN, Halablab MA, Gould DJ, Miles RJ. Distribution of bacteria on hands and the effectiveness of brief and thorough decontamination procedures using non-medicated soap. Zentralbl Bakteriol 1997;285(4):565–575.

    PubMed  CAS  Google Scholar 

  190. Aly R, Maibach HI. Aerobic microbial flora of intertrigenous skin. Appl Environ Microbiol 1977;33(1):97–100.

    PubMed  CAS  Google Scholar 

  191. Bojar RA, Holland KT. The human cutaneous microbiota and factors controlling colonisation. World J Microbiol Biotechnol 2002;18:889–903.

    CAS  Google Scholar 

  192. Somerville DA. The normal flora of the skin in different age groups. Br J Dermatol 1980;81:248–258.

    Google Scholar 

  193. Selwyn S. Microbiology and ecology of human skin. Practitioner 1980;224:1059–1062.

    PubMed  CAS  Google Scholar 

  194. LeFrock JL, Ellis CA, Weinstein L. The impact of hospitalization on the aerobic fecal microflora. Am J Med Sci 1979;277:269–274.

    PubMed  CAS  Google Scholar 

  195. Larson EL. Persistent carriage of Gram-negative bacteria on hands. Am J Infect Control 1981;9:112–119.

    PubMed  CAS  Google Scholar 

  196. Larson EL, McGinley KJ, Foglia AR, Talbot GH, Leyden JJ. Composition and antimicrobial resistance of skin flora in hospitalized and healthy adults. J Clin Microbiol 1986;23:604–608.

    PubMed  CAS  Google Scholar 

  197. Bickers DR, Athar M. Oxidative stress in the pathogenesis of skin disease. J Invest Dermatol 2006;126(12):2565–2575.

    PubMed  CAS  Google Scholar 

  198. Platzek T, Lang C, Grohmann G, Gi US, Baltes W. Formation of a carcinogenic aromatic amine from an azo dye by human skin bacteria in vitro. Hum Exp Toxicol 1999;18(9): 552–559.

    PubMed  CAS  Google Scholar 

  199. Papacostas G, Gate J eds. Les associations microbiennes, leurs applications therapeutiques. Paris: Doin, 1928.

    Google Scholar 

  200. Barak O, Treat JR, James WD. Antimicrobial peptides: effectors of innate immunity in the skin. Adv Dermatol 2005;21:357–374.

    PubMed  Google Scholar 

  201. Chiller K, Selkin BA, Murakawa GJ. Skin microflora and bacterial infections of the skin. J Investig Dermatol Symp Proc 2001;6:170–174.

    PubMed  CAS  Google Scholar 

  202. Fredricks DN. Microbial ecology of human skin in health and disease. J Investig Dermatol Symp Proc 2001;6:167–169.

    PubMed  CAS  Google Scholar 

  203. Hadaway LC. Skin flora and infection. J Infus Nurs 2003;26:44–48.

    PubMed  Google Scholar 

  204. Hadaway LC. Skin flora: unwanted dead or alive. Nursing 2005;35(7):20.

    PubMed  Google Scholar 

  205. Roth RR, James WD. Microbiology of the skin: resident flora, ecology, infection. J Am Acad Dermatol 1989;20:367–390.

    PubMed  CAS  Google Scholar 

  206. Laube S, Farrell AM. Bacterial skin infections in the elderly: diagnosis and treatment. Drugs Aging 2002;19:331–342.

    PubMed  Google Scholar 

  207. http://www.ncbi.nlm.nih.gov/pubmed/18603682?ordinalpos=1&itool=EntrezSystem2.PEn-trez. Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum” Bansal E, Garg A, Bhatia S, Attri AK, Chander J. Spectrum of microbial flora in diabetic foot ulcers. Indian J Pathol Microbiol. 2008;51(2):204–208.

    Google Scholar 

  208. Cogen AL, Nizet V, Gallo RL. Staphylococcus epidermidis functions as a component of the skin innate immune system by inhibiting the pathogen Group A Streptococcus. J Invest Dermatol 2007;127:S131.

    Google Scholar 

  209. Lyon GJ, Novick RP. Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria. Peptides 2004;25:1389–1403.

    PubMed  CAS  Google Scholar 

  210. von Eiff C, Becker K, Machka K, Stammer H, Peters G. Nasal carriage as a source of Staphylococcus aureus bacteremia. Study Group. N Engl J Med 2001;344:11–16.

    Google Scholar 

  211. Von Eiff C, Peters G, Heilmann C. Pathogenesis of infections due to coagulase negative staphylococci. Lancet Infect Dis 2002;2:677–685.

    Google Scholar 

  212. Mainous AG III, Hueston WJ, Everett CJ, Diaz VA. Nasal carriage of Staphylococcus aureus and methicillin-resistant S. aureus in the United States, 2001–2002. Ann Fam Med 2006;4:132–137.

    PubMed  Google Scholar 

  213. Iwatsuki K, Yamasaki O, Morizane S, Oono T. Staphylococcal cutaneous infections: invasion, evasion and aggression. J Dermatol Sci 2006;42:203–214.

    PubMed  CAS  Google Scholar 

  214. Bokarewa MI, Jin T, Tarkowski A. Staphylococcus aureus: Staphylokinase. Int J Biochem Cell Biol 2006;38(4):504–509.

    PubMed  CAS  Google Scholar 

  215. Wichmann S, Wirsing von Koenig CH, Becker-Boost E, Finger H, Group JK. Corynebac-teria in skin flora of healthy persons and patients. Eur J Clin Microbiol 1985;4:502–504.

    PubMed  CAS  Google Scholar 

  216. Kaźmierczak AK, Szewczyk EM. Bacteria forming a resident flora of the skin as a potential source of opportunistic infections. Pol J Microbiol 2005;54(1):27–35.

    PubMed  Google Scholar 

  217. Kaźmierczak AK, Szarapińska-Kwaszewska JK, Szewczyk EM. Opportunistic coryneform organisms—residents of human skin. Pol J Microbiol 2005;54(1):27–35.

    PubMed  Google Scholar 

  218. Brüggemann H, Henne A, Hoster F, Liesegang H, Wiezer A, Strittmatter A, Hujer S, Dürre P, Gottschalk G. The complete genome sequence of Propionibacterium acnes, a commensal of human skin. Science 2004;305:671–673.

    PubMed  Google Scholar 

  219. Mowad CM, McGinley KJ, Foglia A, Leyden JJ. The role of extracellular polysaccharide substance produced by Staphylococcus epidermidis in miliaria. J Am Acad Dermatol 1995;33:729–733.

    PubMed  CAS  Google Scholar 

  220. Goodyear HM, Watson PJ, Egan SA, Price EH, Kenny PA, Harper JI. Skin microflora of atopic eczema in first time hospital attenders. Clin Exp Dermatol 1993;18(4):300–304.

    PubMed  CAS  Google Scholar 

  221. Spielman AI, Zeng XN, Leyden JJ, Preti G. Proteinaceous precursors of human axillary odor: isolation of two novel odor-binding proteins. Experientia 1995;51(1):40–47.

    PubMed  CAS  Google Scholar 

  222. Cogen AL, Nizet V, Gallo RL. Skin microbiota: a source of disease or defence? Br J Dermatol 2008;158:442–455.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Baumann, L., Weisberg, E., Percival, S.L. (2009). Skin Aging and Microbiology. In: Percival, S.L. (eds) Microbiology and Aging. Humana Press. https://doi.org/10.1007/978-1-59745-327-1_4

Download citation

Publish with us

Policies and ethics