Skip to main content

High-Throughput Creation of a Whole-Genome Collection of Yeast Knockout Strains

  • Protocol
Microbial Gene Essentiality: Protocols and Bioinformatics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 416))

Abstract

Gene disruption methods have proved to be a valuable tool for studying gene function in yeast. Gene replacement with a drug-resistant cassette renders the disruption strain selectable and is stable against reversion. Polymerase chain reaction-generated deletion cassettes are designed with homology sequences that flank the target gene. These deletion cassettes also contain unique “molecular bar code” sequence tags. Methods to generate these mutant strains are scalable and facile, allowing for the production of a collection of systematic disruptions across the Saccharomyces cerevisiae genome. The deletion strains can be studied individually or pooled together and assayed in parallel utilizing the sequence tags with microarray-based methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goffeau, A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B., Feldmann, H., et al. (1996) Life with 6000 genes. Science 274, 546–567.

    Article  CAS  PubMed  Google Scholar 

  2. Suter, B., Auerbach, D., and Stagljar, I. (2006) Yeast-based functional genomics and pro-teomics technologies: the first 15 years and beyond. Biotechniques 40, 625–642.

    Article  CAS  PubMed  Google Scholar 

  3. Guthrie, C., and Fink, G., eds. (1991) Guide to Yeast Genetics and Molecular Biology (Methods Enzymology, Vol 194). San Diego: Academic Press.

    Google Scholar 

  4. Shoemaker, D. D., Lashkari, D. A., Morris, D., Mittmann, M., and Davis, R. W. (1996) Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar-coding strategy. Nat. Genet. 14, 450–456.

    Article  CAS  PubMed  Google Scholar 

  5. Winzeler, E. A., Shoemaker, D. D., Astromoff, A., Liang, H., Anderson, K., Andre, B., et al. (1999) Functional characterization of the Saccharomyces cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906.

    Article  CAS  PubMed  Google Scholar 

  6. Gietz, R. D., and Woods, R. A. (1994) High efficiency transformation with lithium acetate. In: Johnston, J. R., ed. Molecular Genetics of Yeast, A Practical Approach. Oxford: IRL Press, pp. 121–134.

    Google Scholar 

  7. Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F., and Cullin, C. (1993) A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 21, 3329–3330.

    Article  CAS  PubMed  Google Scholar 

  8. Hong, E. L., Balakrishnan, R., Christie, K. R., Costanzo, M. C., Dwight, S. S., Engel, S. R., et al. Saccharomyces Genome Database. Available at ftp://ftp.yeastgenome.org/yeast/.

    Google Scholar 

  9. Wach, A., Brachat, A., Pohlmann, R., and Philippsen, P. (1994) New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10, 1793–1808.

    Article  CAS  PubMed  Google Scholar 

  10. Brachmann, C. B., Davies, A., Cost, G. J., Caputo, E., Li, J., Hieter, P., and Boeke, J. D. (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14, 115–132.

    Article  CAS  PubMed  Google Scholar 

  11. Deutschbauer, A. M., Jaramillo, D. F., Proctor, M., Kumm, J., Hillenmeyer, M. E., Davis, R. W., et al. (2005) Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. Genetics 169, 1915–1925.

    Article  CAS  PubMed  Google Scholar 

  12. Giaever, G., Chu, A. M., Ni, L., Connelly, C., Riles, L., Veronneau, S., et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391.

    Article  CAS  PubMed  Google Scholar 

  13. Rozen, S., and Skaletsky, H. J. (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz, S. and Misener, S, eds. Bioinformatics Methods and Protocols: Methods in Molecular Biology. Totowa, NJ: Humana, pp. 365–386.

    Google Scholar 

  14. Zhang, Z., Schwartz, S., Wagner, L., and Miller, W. (2000) A greedy algorithm for aligning DNA sequences. J Comput. Biol. 7, 203–214.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Chu, A.M., Davis, R.W. (2008). High-Throughput Creation of a Whole-Genome Collection of Yeast Knockout Strains. In: Osterman, A.L., Gerdes, S.Y. (eds) Microbial Gene Essentiality: Protocols and Bioinformatics. Methods in Molecular Biology™, vol 416. Humana Press. https://doi.org/10.1007/978-1-59745-321-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-321-9_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-378-7

  • Online ISBN: 978-1-59745-321-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics