Skip to main content

Abstract

Recently, much interest has surfaced on the value of very low daily carbohydrate diets. Therefore, the primary purpose of this chapter is to provide an overview of this topic while examining relevant scientific research concerning the metabolic responses to very-low-carbohydrate “ketogenic” diets (VLCKDs). Our focus is on studies that have limited carbohydrate ingestion to <50g of carbohydrates per day. From a clinical point of view, a discussion of the effects of VLCKDs on body-weight regulation, lipoprotein metabolism, and cardiovascular disease risk factors is presented. The issue of participating in physical activity and exercise performance while on a VLCKD is also discussed. Additional studies are warranted to further validate the physiologic effects of VLCKDs over longer periods of time including studies that look at modifying the quality of macronutrients and the interaction with other interventions such as exercise, dietary supplements, and drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Robinson AM, Williamson DH. Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiol Rev 1980;60:143-187.

    CAS  Google Scholar 

  2. McGarry JD, Foster DW. Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem 1980;49:395-420.

    Article  CAS  Google Scholar 

  3. McGarry JD, Woeltje KF, Kuwajima M, Foster DW. Regulation of ketogenesis and the renaissance of camitine palmitoyltransferase. Diabetes Metab Rev 1989;5:271-284.

    Article  CAS  Google Scholar 

  4. Balasse EO, Fery F. Ketone body production and disposal: effects of fasting, diabetes, and exercise. Diabetes Metab Rev 1989;5:247- 270.

    Article  CAS  Google Scholar 

  5. Mitchell GA, Kassovska-Bratinova S, Boukaftane Y, et al. Medical aspects of ketone body metabolism. Clin Invest Med 1995;18:193-216.

    CAS  Google Scholar 

  6. Nosadini R, Avogaro A, Doria A, Fioretto P, Trevisan R, Morocutti A. Ketone body metabolism: a physiological and clinical overview. Diabetes Metab Rev 1989;5:299-319.

    Article  CAS  Google Scholar 

  7. Veech RL. The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions-ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot Essent Fatty Acids 2004;70:309-319.

    Article  CAS  Google Scholar 

  8. Veech RL, Chance B, Kashiwaya Y, Lardy HA, Cahill GF Jr. Ketone bodies, potential therapeutic uses. IUBMB Life 2001;51:241-247.

    Article  CAS  Google Scholar 

  9. Cahill GF Jr, Veech RL. Ketoacids? Good medicine? Trans Am Clin Climatol Assoc 2003;114:149-161; discussion 162-163.

    Google Scholar 

  10. Rich AJ. Ketone bodies as substrates. Proc Nutr Soc 1990;49:361-373.

    Article  CAS  Google Scholar 

  11. Phinney SD, Bistrian BR, Wolfe RR, Blackburn GL. The human metabolic response to chronic ketosis without caloric restriction: physical and biochemical adaptation. Metabolism 1983;32:757-768.

    Article  CAS  Google Scholar 

  12. Jensen MD, Caruso M, Heiling V, Miles JM. Insulin regulation of lipolysis in nondiabetic and IDDM subjects. Diabetes 1989;38:1595-1601.

    Article  CAS  Google Scholar 

  13. Kerner J, Hoppel C. Fatty acid import into mitochondria. Biochim Biophys Acta 2000;1486:1-17.

    CAS  Google Scholar 

  14. Serra D, Casals N, Asins G, Royo T, Ciudad CJ, Hegardt FG. Regulation of mitochondrial 3-hydroxy-3-methylglutaryl-coenzyme A synthase protein by starvation, fat feeding, and diabetes. Arch Biochem Biophys 1993;307:40-45.

    Article  CAS  Google Scholar 

  15. Thumelin S, Forestier M, Girard J, Pegorier JP. Developmental changes in mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene expression in rat liver, intestine and kidney. Biochem J 1993;292(Pt 2):493-496.

    CAS  Google Scholar 

  16. Fery F, Balasse EO. Ketone body production and disposal in diabetic ketosis. A comparison with fasting ketosis. Diabetes 1985;34:326-332.

    CAS  Google Scholar 

  17. Garber AJ, Menzel PH, Boden G, Owen OE. Hepatic ketogenesis and gluconeogenesis in humans. J Clin Invest 1974;54:981-989.

    Article  CAS  Google Scholar 

  18. Galbo H, Christensen NJ, Mikines KJ, et al. The effect of fasting on the hormonal response to graded exercise. J Clin Endocrinol Metab 1981;52:1106-1112.

    Article  CAS  Google Scholar 

  19. Pequignot JM, Peyrin L, Peres G. Catecholamine-fuel interrelationships during exercise in fasting men. J Appl Physiol 1980;48:109-113.

    CAS  Google Scholar 

  20. Cameron-Smith D, Burke LM, Angus DJ, et al. A short-term, high-fat diet up-regulates lipid metabolism and gene expression in human skeletal muscle. Am J Clin Nutr 2003;77:313-318.

    CAS  Google Scholar 

  21. Fleming J, Sharman MJ, Avery NG, et al. Endurance capacity and high-intensity exercise performance responses to a high fat diet. Int J Sport Nutr Exerc Metab 2003; 13:466-478.

    CAS  Google Scholar 

  22. Helge JW, Watt PW, Richter EA, Rennie MJ, Kiens B. Fat utilization during exercise: adaptation to a fat-rich diet increases utilization of plasma fatty acids and very low density lipoprotein-triacylglycerol in humans. J Physiol 2001;537:1009-1020.

    Article  CAS  Google Scholar 

  23. Goedecke JH, Christie C, Wilson G, et al. Metabolic adaptations to a high-fat diet in endurance cyclists. Metabolism 1999;48:1509-1517.

    Article  CAS  Google Scholar 

  24. Rowlands DS, Hopkins WG. Effects of high-fat and high-carbohydrate diets on metabolism and performance in cycling. Metabolism 2002;51:678-690.

    Article  CAS  Google Scholar 

  25. Phinney SD, Bistrian BR, Evans WJ, Gervino E, Blackburn GL. The human metabolic response to chronic ketosis without caloric restriction: preservation of submaximal exercise capability with reduced carbohydrate oxidation. Metabolism 1983;32:769-776.

    Article  CAS  Google Scholar 

  26. Lambert EV, Speechly DP, Dennis SC, Noakes TD. Enhanced endurance in trained cyclists during moderate intensity exercise following 2 weeks adaptation to a high fat diet. Eur J Appl Physiol Occup Physiol 1994;69:287-293.

    Article  CAS  Google Scholar 

  27. Schrauwen P, Wagenmakers AJ, van Marken Lichtenbelt WD, Saris WH, Westerterp KR. Increase in fat oxidation on a high-fat diet is accompanied by an increase in triglyceride-derived fatty acid oxidation. Diabetes 2000;49:640-646.

    CAS  Google Scholar 

  28. Kiens B, Essen-Gustavsson B, Gad P, Lithell H. Lipoprotein lipase activity and intramuscular triglyceride stores after long-term high-fat and high-carbohydrate diets in physically trained men. Clin Physiol 1987;7:1-9.

    Article  CAS  Google Scholar 

  29. Burke LM, Hawley JA, Angus DJ, et al. Adaptations to short-term high-fat diet persist during exercise despite high carbohydrate availability. Med Sci Sports Exerc 2002;34:83-91.

    Article  Google Scholar 

  30. Lambert EV, Goedecke JH, Zyle C, et al. High-fat diet versus habitual diet prior to carbohydrate loading: effects of exercise metabolism and cycling performance. Int J Sport Nutr Exerc Metab 2001;11:209-225.

    CAS  Google Scholar 

  31. Burke LM, Angus DJ, Cox GR, et al. Effect of fat adaptation and carbohydrate restoration on metabolism and performance during prolonged cycling. J Appl Physiol 2000;89:2413-2421.

    CAS  Google Scholar 

  32. Carey AL, Staudacher HM, Cummings NK, et al. Effects of fat adaptation and carbohydrate restoration on prolonged endurance exercise. J Appl Physiol 2001;91:115-122.

    CAS  Google Scholar 

  33. Kuczmarski RJ, Flegal KM, Campbell SM, Johnson CL. Increasing prevalence of overweight among US adults. The National Health and Nutrition Examination Surveys, 1960 to 1991. JAMA 1994;272:205-211.

    Article  CAS  Google Scholar 

  34. Rabast U, Kasper H, Schonborn T. Comparative studies in obese subjects fed carbohydrate-restricted and high carbohydrate 1,000-calorie formula diets. Nutr Metab 1978;22:269-277.

    Article  CAS  Google Scholar 

  35. Rabast U, Schonborn J, Kasper H. Dietetic treatment of obesity with low and highcarbohydrate diets: comparative studies and clinical results. Int J Obes 1979;3:201-211.

    CAS  Google Scholar 

  36. Brehm BJ, Seeley RJ, Daniels SR, D’Alessio DA. A randomized trial comparing a very low carbohydrate diet and a calorie-restricted low fat diet on body weight and cardiovascular risk factors in healthy women. J Clin Endocrinol Metab 2003;88:1617-1623.

    Article  CAS  Google Scholar 

  37. Foster GD, Wyatt HR, Hill JO, et al. A randomized trial of a low-carbohydrate diet for obesity. N Engl J Med 2003;348:2082-2090.

    Article  CAS  Google Scholar 

  38. Yancy WS Jr, Olsen MK, Guyton JR, Bakst RP, Westman EC. A low-carbohydrate, ketogenic diet versus a low-fat diet to treat obesity and hyperlipidemia: a randomized, controlled trial. Ann Intern Med 2004;140:769-777.

    Google Scholar 

  39. Sondike SB, Copperman N, Jacobson MS. Effects of a low-carbohydrate diet on weight loss and cardiovascular risk factor in overweight adolescents. J Pediatr 2003; 142:253-258.

    Article  CAS  Google Scholar 

  40. Stern L, Iqbal N, Seshadri P, et al. The effects of low-carbohydrate versus conventional weight loss diets in severely obese adults: one-year follow-up of a randomized trial. Ann Intern Med 2004;140:778-785.

    Google Scholar 

  41. Samaha FF, Iqbal N, Seshadri P, et al. A low-carbohydrate as compared with a low-fat diet in severe obesity. N Engl J Med 2003;348:2074-2081.

    Article  CAS  Google Scholar 

  42. Volek JS, Sharman MJ, Gomez AL, et al. Comparison of energy-restricted very lowcarbohydrate and low-fat diets on weight loss and body composition in overweight men and women. Nutr Metab (Land) 2004;1:13.

    Google Scholar 

  43. Bray GA. Low-carbohydrate diets and realities of weight loss. JAMA 2003;289:1853-1855.

    Article  Google Scholar 

  44. Yudkin J, Carey M. The treatment of obesity by the “high-fat” diet: the inevitability of calories. Lancet 1960:939-941.

    Google Scholar 

  45. Arase K, Fisler JS, Shargill NS, York DA, Bray GA. Intracerebroventricular infusions of 3-OHB and insulin in a rat model of dietary obesity. Am J Physiol 1988;255:R974-981.

    CAS  Google Scholar 

  46. Melanson KJ, Westerterp-Plantenga MS, Saris WH, Smith FJ, Campfield LA. Blood glucose pattems and appetite in time-blinded humans: carbohydrate versus fat. Am J Physiol 1999;277:R337-345.

    CAS  Google Scholar 

  47. Volek JS, Westman EC. Very-law-carbohydrate weight-loss diets revisited. Cleve Clin J Med 2002;69:849, 853, 856-858 passim.

    Google Scholar 

  48. Feinman RD, Fine ET. “A calorie is a calorie” violates the second law of thermodynamics. Nutr J 2004;3:9.

    Article  CAS  Google Scholar 

  49. Buchholz AC, Schoeller DA. Is a calorie a calorie? Am J Clin Nutr 2004;79:899S-906S.

    CAS  Google Scholar 

  50. Feinman RD, Fine ET. Thermodynamics and metabolic advantage of reducing diets. Metab Syndr Rel Disord 2003;1:209-219.

    Article  CAS  Google Scholar 

  51. Jequier E. Pathways to obesity. Int J Obes Relat Metab Disord 2002;26(Suppl 2):S12-17.

    Article  CAS  Google Scholar 

  52. Bisschop PH, Pereira Arias AM, Ackermans MT, et al. The effects of carbohydrate variation in isocaloric diets on glycogenolysis and gluconeogenesis in healthy men. J Clin Endocrinol Metab 2000;85:1963-1967.

    Article  CAS  Google Scholar 

  53. Meckling KA, O’Sullivan C, Saari D. Comparison of a low-fat diet to a lowcarbohydrate diet on weight loss, body composition, and risk factors for diabetes and cardiovascular disease in free-living, overweight men and women. J Clin Endocrinol Metab 2004;89:2717-2723.

    Article  CAS  Google Scholar 

  54. Garrow JS, Summerbell CD. Meta-analysis: effect of exercise, with or without dieting, on the body composition of overweight subjects. Eur J Clin Nutr 1995;49:1-10.

    CAS  Google Scholar 

  55. Benoit FL, Martin RL, Watten RH. Changes in body composition during weight reduction in obesity. Balance studies comparing effects of fasting and a ketogenic diet. Ann Intern Med 1965;63:604-612.

    CAS  Google Scholar 

  56. Young CM, Scanlan SS, Im HS, Lutwak L. Effect of body composition and other parameters in obese young men of carbohydrate level of reduction diet. Am J Clin Nutr 1971;24:290-296.

    CAS  Google Scholar 

  57. Phinney SO, Horton ES, Sims EA, Hanson JS, Danforth E Jr, LaGrange BM. Capacity for moderate exercise in obese subjects after adaptation to a hypocaloric, ketogenic diet. J Clin Invest 1980;66:1152-1161.

    Article  CAS  Google Scholar 

  58. Willi SM, Oexmann MJ, Wright NM, Collop NA, Key LL Jr. The effects of a high-protein, low-fat, ketogenic diet on adolescents with morbid obesity: body composition, blood chemistries, and sleep abnormalities. Pediatrics 1998;101:61-67.

    Article  CAS  Google Scholar 

  59. Volek JS, Sharman MJ, Love OM, et al. Body composition and hormonal responses to a carbohydrate-restricted diet. Metabolism 2002;51:864-870.

    Article  CAS  Google Scholar 

  60. Meckling KA, Gauthier M, Grubb R, Sanford J. Effects of a hypocaloric, low-carbohydrate diet on weight loss, blood lipids, blood pressure, glucose tolerance, and body composition in free-living overweight women. Can J Physiol Pharmacol 2002;80: 1095-1105.

    Article  CAS  Google Scholar 

  61. Gasteyger C, Tremblay A. Metabolic impact of body fat distribution. J Endocrinol Invest 2002;25:876-883.

    CAS  Google Scholar 

  62. Blake GJ, Ridker PM. Novel clinical markers of vascular wall inflammation. Circ Res 2001;89:763-771.

    Article  CAS  Google Scholar 

  63. Ross R. Atherosclerosis is an inflammatory disease. Am Heart J 1999;138:S419-420.

    Article  CAS  Google Scholar 

  64. Haffner S, Taegtmeyer H. Epidemic obesity and the metabolic syndrome. Circulation 2003;108:1541-1545.

    Article  Google Scholar 

  65. Sakkinen PA, Wahl P, Cushman M, Lewis MR, Tracy RP. Clustering of procoagulation, inflammation, and fibrinolysis variables with metabolic factors in insulin resistance syndrome. Am J Epidemiol 2000;152:897-907.

    Article  CAS  Google Scholar 

  66. Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA 2002;287:356-359.

    Article  Google Scholar 

  67. Kereiakes OJ, Willerson JT. Metabolic syndrome epidemic. Circulation 2003;108:1552-1553.

    Article  Google Scholar 

  68. National Cholesterol Education Program Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Bethesda, MD: National Heart, Lung and Blood Institute and National Institutes of Health;2001.

    Google Scholar 

  69. Gordon T, Kannel WB, Castelli WP, Dawber TR. Lipoproteins, cardiovascular disease, and death. The Framingham study. Arch Intern Med 1981;141:1128-1131.

    Article  CAS  Google Scholar 

  70. Newbold HL. Reducing the serum cholesterol level with a diet high in animal fat. South Med J 1988;81:61-63.

    Article  CAS  Google Scholar 

  71. Westman EC, Yancy WS, Edman JS, Tomlin KF, Perkins CE. Effect of 6-month adherence to a very low carbohydrate diet program. Am J Med 2002;113:30-36.

    Article  Google Scholar 

  72. Dashti HM, Bo-Abbas YY, Asfar SK, et al. Ketogenic diet modifies the risk factors of heart disease in obese patients. Nutrition 2003;19:901-902.

    Article  CAS  Google Scholar 

  73. Hays JH, DiSabatino A, Gorman RT, Vincent S, Stillabower ME. Effect of a high saturated fat and no-starch diet on serum lipid subfractions in patients with documented atherosclerotic cardiovascular disease. Mayo Clin Proc 2003;78:1331-1336.

    Article  CAS  Google Scholar 

  74. Sharman MJ, Gomez AL, Kraemer WJ, Volek JS. Very low-carbohydrate and low-fat diets affect fasting lipids and postprandial lipemia differently in overweight men. J Nutr 2004;134:880-885.

    CAS  Google Scholar 

  75. Dattilo AM, Kris-Etherton PM. Effects of weight reduction on blood lipids and lipoproteins: a meta-analysis. Am J Clin Nutr 1992;56:320-328.

    CAS  Google Scholar 

  76. Larosa JC, Fry AG, Muesing R, Rosing DR. Effects of high-protein, low-carbohydrate dieting on plasma lipoproteins and body weight. J Am Diet Assoc 1980;77:264-270.

    CAS  Google Scholar 

  77. Volek JS, Sharman MJ, Gomez AL, et al. Comparison of a very low-carbohydrate and low-fat diet on fasting lipids, LDL subclasses, insulin resistance, and postprandial lipemic responses in overweight women. J Am Coli Nutr 2004;23:177-184.

    Google Scholar 

  78. Sharman MJ, Kraemer WJ, Love OM, et al. A ketogenic diet favorably affects serum biomarkers for cardiovascular disease in normal-weight men. J Nutr 2002;132:1879-1885.

    CAS  Google Scholar 

  79. Volek JS, Sharman MJ, Gomez AL, Scheett TP, Kraemer WJ. An isoenergetic very low carbohydrate diet improves serum HDL cholesterol and triacylglycerol concentrations, the total cholesterol to HDL cholesterol ratio and postprandial pipemic responses compared with a low fat diet in normal weight, normolipidemic women. J Nutr 2003; 133:2756-2761.

    CAS  Google Scholar 

  80. Fuehrlein BS, Rutenberg MS, Silver IN, et al. Differential metabolic effects of saturated versus polyunsaturated fats in ketogenic diets. J Clin Endocrinol Metab 2004;89:1641- 1645.

    Article  CAS  Google Scholar 

  81. Volek JS, Gomez AL, Kraemer WJ. Fasting lipoprotein and postprandial triacylglycerol responses to a low-carbohydrate diet supplemented with n-3 fatty acids. J Am Coli Nutr 2000;19:383-391.

    CAS  Google Scholar 

  82. Wilson PW, Garrison RJ, Castelli WP, Feinleib M, McNamara PM, Kannel WB. Prevalence of coronary heart disease in the Framingham Offspring Study: role of lipoprotein cholesterols. Am J Cardiol 1980;46:649-654.

    Article  CAS  Google Scholar 

  83. Katzel LI, Busby-Whitehead MJ, Rogus EM, Krauss RM, Goldberg AP. Reduced adipose tissue lipoprotein lipase responses, postprandial lipemia, and low highdensity lipoprotein-2 subspecies levels in older athletes with silent myocardial ischemia. Metabolism 1994;43:190-198.

    Article  CAS  Google Scholar 

  84. Austin MA, Hokanson JE, Edwards KL. Hypertriglyceridemia as a cardiovascular risk factor. Am J Cardiol 1998;81:7B-12B.

    Article  CAS  Google Scholar 

  85. Rickman F, Mitchell N, Dingman J, Dalen JE. Changes in serum cholesterol during the Stillman diet. JAMA 1974;228:54-58.

    Article  CAS  Google Scholar 

  86. Karpe F, Steiner G, Uffelman K, Olivecrona T, Hamsten A. Postprandial lipoproteins and progression of coronary atherosclerosis. Atherosclerosis 1994;106:83-97.

    Article  CAS  Google Scholar 

  87. Krauss RM. Atherogenicity of triglyceride-rich lipoproteins. Am J Cardiol 1998;81:13B-17B.

    Article  CAS  Google Scholar 

  88. Patsch JR, Miesenbock G, Hopferwieser T, et al. Relation of triglyceride metabolism and coronary artery disease. Studies in the postprandial state. Arterioscler Thromb 1992;12: 1336- 1345.

    Article  CAS  Google Scholar 

  89. Chen YD, Coulston AM, Zhou MY, Hollenbeck CB, Reaven GM. Why do low-fat high-carbohydrate diets accentuate postprandial lipemia in patients with NIDDM? Diabetes Care 1995;18:10-16.

    Article  CAS  Google Scholar 

  90. Jackson RL, Yates MT, McNerney CA, Kashyap ML. Relationship between post-heparin plasma lipases, triglycerides and high density lipoproteins in normal subjects. Horm Metab Res 1990;22:289-294.

    Article  CAS  Google Scholar 

  91. Campos H, Dreon DM, Krauss RM. Associations of hepatic and lipoprotein lipase activities with changes in dietary composition and low density lipoprotein subclasses. J Lipid Res 1995;36:462-472.

    CAS  Google Scholar 

  92. Krauss RM, Burke DJ. Identification of multiple subclasses of plasma low density lipoproteins in normal humans. J Lipid Res 1982;23:97-104.

    CAS  Google Scholar 

  93. Austin MA, King MC, Vranizan KM, Krauss RM. Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk. Circulation 1990;82:495-506.

    Article  CAS  Google Scholar 

  94. Dreon DM, Fernstrom HA, Miller B, Krauss RM. Low-density lipoprotein subclass patterns and lipoprotein response to a reduced-fat diet in men. FASEB J 1994;8:121-126.

    CAS  Google Scholar 

  95. Dreon DM, Fernstrom HA, Williams PT, Krauss RM. A very low-fat diet is not associated with improved lipoprotein profiles in men with a predominance of large, low-density lipoproteins. Am J Clin Nutr 1999;69:411-418.

    CAS  Google Scholar 

  96. Griffin BA, Freeman DJ, Tait GW, et al. Role of plasma triglyceride in the regulation of plasma low density lipoprotein (LDL) subfractions: relative contribution of small, dense LDL to coronary heart disease risk. Atherosclerosis 1994;106: 241-253.

    Article  CAS  Google Scholar 

  97. Libby P, Ridker PM. Novel inflammatory markers of coronary risk: theory versus practice. Circulation 1999;100:1148- 1150.

    Article  CAS  Google Scholar 

  98. Hwang SJ, Ballantyne CM, Sharrett AR, et al. Circulating adhesion molecules VCAM-1, ICAM-1, and E-selectin in carotid atherosclerosis and incident coronary heart disease cases: the Atherosclerosis Risk In Communities (ARIC) study. Circulation 1997;96:4219-4225.

    Article  CAS  Google Scholar 

  99. Shannan MJ, Volek JS. Weight loss leads to reductions in inflammatory biomarkers after a very-low-carbohydrate diet and a low-fat diet in overweight men. Clin Sci (Lond) 2004;107:365-369.

    Article  Google Scholar 

  100. Ziccardi P, Nappo F, Giugliano G, et al. Reduction of inflammatory cytokine concentrations and improvement of endothelial functions in obese women after weight loss over one year. Circulation 2002;105:804-809.

    Article  CAS  Google Scholar 

  101. Heilbronn LK, Noakes M, Clifton PM. Energy restriction and weight loss on very-low-fat diets reduce C-reactive protein concentrations in obese, healthy women. Arterioscler Thromb Vase Biol 2001;21:968-970.

    Article  CAS  Google Scholar 

  102. Position of Dietitians of Canada, the American Dietetic Association, and the American College of Sports Medicine: Nutrition and Athletic Performance. Can J Diet Pract Res 2000;61 :176-192.

    Google Scholar 

  103. Bergstrom J, Hermansen L, Hultman E, Saltin B. Diet, muscle glycogen and physical performance. Acta Physiol Scand 1967;71:140-150.

    Article  CAS  Google Scholar 

  104. Phinney SD. Ketogenic diets and physical performance. Nutr Metab (Lond) 2004;1:2.

    Google Scholar 

  105. Haennel RG, Lemire F. Physical activity to prevent cardiovascular disease. How much is enough? Can Fam Physician 2002;48:65-71.

    Google Scholar 

  106. Yu KC, Cooper AD. Postprandial lipoproteins and atherosclerosis. Front Biosci 200l;6:D332-354.

    Article  CAS  Google Scholar 

  107. Cohn JS. Postprandial lipemia: emerging evidence for atherogenicity of remnant lipoproteins. Can J Cardiol 1998;14(Suppl B):18B-27B.

    CAS  Google Scholar 

  108. Smith D, Watts GF, Dane-Stewart C, Mamo Jc. Post-prandial chylomicron response may be predicted by a single measurement of plasma apolipoprotein B48 in the fasting state. Eur J Clin Invest 1999;29:204-209.

    Article  CAS  Google Scholar 

  109. Schaefer EJ. Lipoproteins, nutrition, and heart disease. Am J Clin Nutr 2002;75:191-212.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press. a part of Spring Science+Business Media, LLC

About this chapter

Cite this chapter

Valek, J.S., Forsythe, C. (2008). Very-Law-Carbohydrate Diets. In: Antonio, J., Kalman, D., Stout, J.R., Greenwood, M., Willoughby, D.S., Haff, G.G. (eds) Essentials of Sports Nutrition and Supplements. Humana Press. https://doi.org/10.1007/978-1-59745-302-8_25

Download citation

Publish with us

Policies and ethics