Skip to main content

Extended-Release Oral Drug Delivery Technologies: Monolithic Matrix Systems

  • Protocol
Drug Delivery Systems

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 437))

Abstract

Oral drug delivery is the largest and the oldest segment of the total drug delivery market. It is the fastest growing and most preferred route for drug administration. Use of hydrophilic matrices for oral extended release of drugs is a common practice in the pharmaceutical industry. This chapter presents different polymer choices for fabrication of monolithic hydrophilic matrices and discusses formulation and manufacturing variables affecting the design and performance of the extended-release product by using selected practical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Lordi, N.G. (1987) Sustained release dosage forms. In: Lachman, L., Lieberman, H.A. and Kanig, J.L. (eds.) The theory and practice of industrial pharmacy, 3rd edn (Indian edn). Varghese Publishing House, Bombay, pp. 430–456.

    Google Scholar 

  2. 2. Chiao, C.S.L. and Robinson, J.R. (1995) Sustained-release drug delivery systems. In: Gennaro, A.R. (ed.) Remington: the science and practice of pharmacy, vol. II. Mack Publishing Company, Easton, PA, pp. 1660–1675.

    Google Scholar 

  3. 3. Kydonieus, A.F. (1890) Fundamental concepts of controlled release. In: Kydonieus, A.F. (ed.) Controlled release technologies: methods, theory, and applications, vol. I. CRC, Boca Raton, Florida, pp. 1–19.

    Google Scholar 

  4. U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Drug Approval Reports. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Reports.ReportsMenu.

  5. GlaxoSmithKline. Our Histroy [see 1952, online]. http://www.gsk.com/about/histroy-noflash.htm.

  6. 6. Sastry, S.V., Nyshadham, J.R. and Fix, J.A. (2000) Recent technological advances in oral drug delivery – a review. Pharm Sci Technol Today, 3, 138–145.

    Article  CAS  Google Scholar 

  7. 7. Rathbone, M.J., Hadgraft, J. and Roberts, M.S. (eds.) (2003) Modified release drug delivery technology. Marcel Dekker, New York.

    Google Scholar 

  8. 8. Buri, P., and Doelker, E. (1980) [Formulation of sustained-release tablets. II. Hydrophilic matrices]. Pharm Acta Helv, 55, 189–197.

    CAS  Google Scholar 

  9. 9. Conte, U., Colombo, P., Caramella, C. and La Manna, A. (1979) Sustained release nitrofurantoin tablets by direct compression. Farmaco [Prat], 34, 306–316.

    CAS  Google Scholar 

  10. 10. Conte, U., Colombo, P., Gazzaniga, A., Sangalli, M.E. and La Manna, A. (1988) Swelling-activated drug delivery systems. Biomaterials, 9, 489–493.

    Article  CAS  Google Scholar 

  11. 11. Lee, B.-J., Ryu, S.-G. and Cui, J.-H. (1999) Formulation and release characteristics of hydroxypropyl methylcellulose matrix tablet containing melatonin. Drug Dev Ind Pharm, 25, 493–501.

    Article  CAS  Google Scholar 

  12. 12. Salomen, J.L. and Doelker, E. (1980) [Formulation of sustained release tablets. I. Inert matrices]. Pharm Acta Helv, 55, 174–182.

    CAS  Google Scholar 

  13. 13. Wilding, I.R., Davis, S.S., Melia, C.D., Hardy, J.G., Evans, D.F., Short, A.H. and Sparrow, R.A. (1989) Gastrointestinal transit of Sinemet CR in healthy volunteers. Neurology, 39, 53–58.

    CAS  Google Scholar 

  14. 14. Wilding, I.R., Hardy, J.G., Davis, S.S., Melia, C.D., Evans, D.F., Short, A.H., Sparrow, R.A. and Yeh, K.C. (1991) Characterisation of the in vivo behaviour of a controlled-release formulation of levodopa (Sinemet CR). Clin Neuropharmacol, 14, 305–321.

    Article  CAS  Google Scholar 

  15. 15. Zhu, Y., Shah, N.H., Malick, A.W., Infeld, M.H. and McGinity, J.W. (2006) Controlled release of a poorly water-soluble drug from hot-melt extrudates containing acrylic polymers. Drug Dev Ind Pharm, 32, 569–583.

    Article  CAS  Google Scholar 

  16. USP 29-NF 24. General Chapters: <1090> In vivo bioequivalence guidance – general guidelines. http://www.uspnf.com/uspnf/login.

  17. Inactive ingredient search for approved drug products. http://www.accessdata.fda.gov/scripts/cder/iig/index.cfm.

  18. 18. Rowe, R.C., Sheskey, P.J. and Owen, S.C. (2006) Handbook of pharmaceutical excipients, 5th edn. The Pharmaceutical Press, London, UK.

    Google Scholar 

  19. Dow excipients, Methocel™ products. http://www.dow.com/dowexcipients/products/methocel.htm.

  20. USP monographs: hypromellose. http://www.uspnf.com/uspnf/login.

  21. 21. Rajabi-Siahboomi, A.R., Bowtell, R.W., Mansfield, P., Davies, M.C. and Melia, C.D. (1996) Structure and behavior in hydrophilic matrix sustained release dosage forms: 4. Studies of water mobility and diffusion coefficients in the gel layer of HPMC tablets using NMR imaging. Pharm Res, 13, 376–380.

    Article  CAS  Google Scholar 

  22. 22. McCrystal, C.B., Ford, J.L. and Rajabi-Siahboomi, A.R. (1999) Water distribution studies within cellulose ethers using differential scanning calorimetry. 1. Effect of polymer molecular weight and drug addition. J Pharm Sci, 88, 792–796.

    Article  CAS  Google Scholar 

  23. Metolose®. http://www.metolose.jp/e/pharmaceutical/metolose.shtml.

  24. Aqualon pharmaceutical excipients. http://www.herc.com/aqualon/pharm/index.html.

  25. 25. Dabbagh, M.A., Ford, J.L., Rubinstein, M.H., Hogan, J.E. and Rajabi-Siahboomi, A.R. (1999) Release of propranolol hydrochloride from matrix tablets containing sodium carboxymethylcellulose and hydroxypropylmethylcellulose. Pharm Dev Technol, 4, 313–324.

    Article  CAS  Google Scholar 

  26. Carbopol brand polymers. http://www.carbopol.com/.

  27. Dow excipients, POLYOX products. http://www.dow.com/dowexcipients/products/polyox.htm.

  28. 28. Timmins, P., Delargy, A.M. and Howard, J.R. (1997) Optimization and characterization of a pH independant extended release hydrophilic matrix tablet. Pharm Dev Technol, 2, 25–31.

    Article  CAS  Google Scholar 

  29. 29. Kelly, M.L., Tobyn, M.J. and Staniforth, J.N. (2000) Tablet and capsule hydrophilic matrices based on heterodisperse polysaccarides having porosity-independant in vitro release profiles. Pharm Dev Technol, 5, 59–66.

    Article  CAS  Google Scholar 

  30. 30. Rajabi-Siahboomi, A.R. and Jordan, M.P. (2000) Slow release HPMC matrix systems. Eur Pharm Rev, 5, 21–23.

    Google Scholar 

  31. 31. Siepmann, J., Kranz, H., Bodmeier, R. and Peppas, N.A. (1999) HPMC-matrices for controlled drug delivery: a new model combining diffusion, swelling, and dissolution mechanisms and predicting the release kinetics. Pharm Res, 16, 1748–1756.

    Article  CAS  Google Scholar 

  32. 32. Siepmann, J. and Peppas, N.A. (2000) Hydrophilic matrices for controlled drug delivery: an improved mathematical model to predict the resulting drug release kinetics (the “sequential layer” model). Pharm Res, 17, 1290–1298.

    Article  CAS  Google Scholar 

  33. 33. Siepmann, J. and Peppas, N.A. (2001) Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev, 48, 139–157.

    Article  CAS  Google Scholar 

  34. 34. Siepmann, J. and Peppas, N.A. (2001) Mathematical modeling of controlled drug delivery. Adv Drug Deliv Rev, 48, 137–138.

    Article  CAS  Google Scholar 

  35. 35. Siepmann, J., Podual, K., Sriwongjanya, M., Peppas, N.A. and Bodmeier, R. (1999) A new model describing the swelling and drug release kinetics from hydroxypropyl methylcellulose tablets. J Pharm Sci, 88, 65–72.

    Article  CAS  Google Scholar 

  36. 36. Siepmann, J., Streubel, A. and Peppas, N.A. (2002) Understanding and predicting drug delivery from hydrophilic matrix tablets using the “sequential layer” model. Pharm Res, 19, 306–314.

    Article  CAS  Google Scholar 

  37. 37. Korsmeyer, R.W., Gurny, R., Doelker, E., Buri, P. and Peppas, N.A. (1983) Mechanisms of potassium chloride release from compressed, hydrophilic, polymeric matrices: effect of entrapped air. J Pharm Sci, 72, 1189–1191.

    Article  CAS  Google Scholar 

  38. 38. Ford, J.L., Mitchell, K., Rowe, P., Armstrong, D.J., Elliott, P.N.C., Rostron, C. and Hogan, J.E. (1991) Mathematical modelling of drug release from hydroxypropylmethylcellulose matrices: effect of temperature. Int J Pharm, 71, 95–104.

    Article  CAS  Google Scholar 

  39. 39. Bajwa, G.S., Hoebler, K., Sammon, C., Timmins, P. and Melia, C.D. (2006) Microstructural imaging of early gel layer formation in HPMC matrices. J Pharm Sci, 95, 2145–2157.

    Article  CAS  Google Scholar 

  40. 40. Timmins, P., Dennis, A.B. and Vyas, K.A. (2002) Biphasic controlled release delivery system for high solubility pharmaceuticals and method. US Pat. 6,475,521.

    Google Scholar 

  41. 41. Timmins, P., Dennis, A.B. and Vyas, K.A. (2003) Method of use of a biphasic controlled release delivery system for high solubility pharmaceuticals and method. US Pat. 6,660,300.

    Google Scholar 

  42. Electronic orange book query. http://www.fda.gov/cder/ob/docs/queryai.htm.

  43. International patent applications. http://www.wipo.int/pctdb/en/.

  44. Lohray, B.B. and Tiwari, S.B. (2005) A controlled release delivery system for metformin. WO/2005/123134.

    Google Scholar 

  45. 45. Rao, K.V., Devi, P.K. and Buri, P. (1990) Influence of molecular size and water solubility of the solute on its release from swelling and erosion controlled polymeric matrices. J Control Release, 12, 133–141.

    Article  CAS  Google Scholar 

  46. Influence of drug solubility on release profiles of drugs from Methocel K4M CR matrices [Internal report]. Colorcon Inc., West Point, PA.

    Google Scholar 

  47. 47. Hogan, J.E. (1989) Hydroxypropylmethylcellulose sustained release technology. Drug Dev Ind Pharm, 15, 975–999.

    Article  CAS  Google Scholar 

  48. 48. Velasco, M.V., Ford, J.L., Rowe, P. and Rajabi-Siahboomi, A.R. (1999) Influence of drug:hydroxypropylmethylcellulose ratio, drug and polymer particle size and compression force on the release of diclofenac sodium from HPMC tablets. J Control Release, 57, 75–85.

    Article  CAS  Google Scholar 

  49. 49. Mitchell, K., Ford, J.L., Armstrong, D.J., Elliott, P.N., Hogan, J.E. and Rostron, C. (1993) The influence of drugs on the properties of gels and swelling characteristics of matrices containing methylcellulose or hydroxypropylmethylcellulose. Int J Pharm, 100, 165–173.

    Article  CAS  Google Scholar 

  50. Brand protection: tablet shape. http://www.colorcon.com/best/c06_tablet_shape.html.

  51. 51. Ford, J.L., Rubinstein, M.H., Changela, A. and Hogan, J.E. (1985) The influence of pH on the dissolution of promethazine hydrochloride from hydroxypropyl methylcellulose controlled release tablets. J Pharm Pharmacol, 37, 115P.

    Google Scholar 

  52. 52. Levina, M., Gothoskar, A. and Rajabi-Siahboomi, A. (2006) Application of a modelling system in the formulation of extended release hydrophilic matrices. Pharm Technol Eur, 18, 20–26.

    CAS  Google Scholar 

  53. 53. Alderman, D.A. (1984) A review of cellulose ethers in hydrophilic matrices for oral controlled-release dosage forms. Int J Pharm Tech Prod Manuf, 5, 1–9.

    CAS  Google Scholar 

  54. 54. Shah, N., Railkar, A.S., Watnanee, P., Zeng, F.-U., Chen, A., Infeld, M.H. and Malick, A.W. (1996) Effects of processing techniques in controlling the release rate and mechanical strength of hydroxypropyl methylcellulose based hydrogel matrices. Eur J Pharm Biopharm, 42, 183–187.

    CAS  Google Scholar 

  55. 55. Sarkar, N. (1979) Thermal gelation properties of methyl and hydroxypropyl methylcellulose. J Appl Polym Sci, 24, 1073–1087.

    Article  CAS  Google Scholar 

  56. 56. Levina, M. and Rajabi-Siahboomi, A. (2004) The influence of excipients on drug release from hydroxypropyl methylcellulose matrices. J Pharm Sci, 93, 2746–2754.

    Article  CAS  Google Scholar 

  57. 57. Horter, D. and Dressman, J.D. (1997) Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv Drug Deliv Rev, 25, 3–14.

    Article  Google Scholar 

  58. 58. Vashi, V.I. and Meyer, M.C. (1988) Effect of pH on the in vitro dissolution and in vivo absorption of controlled release theophylline in dogs. J Pharm Sci, 77, 760–774.

    Article  CAS  Google Scholar 

  59. 59. Kohri, N., Miyata, N., Takahashi, M., Endo, H., Iseki, K., Miyazaki, K., Takechi, S. and Nomura, A. (1992) Evaluation of pH-independant sustained release granules of dipyridamole by using gastric-acidity controlled rabbits and human subjects. Int J Pharm, 81, 49–58.

    Article  CAS  Google Scholar 

  60. 60. Tatavarti, A.S. and Hoag, S.W. (2006) Microenvironmental pH modulation based release enhancement of a weakly basic drug from hydrophilic matrices. J Pharm Sci, 95, 1459–1468.

    Article  CAS  Google Scholar 

  61. 61. Siepe, S., Herrmann, W., Borchert, H.H., Lueckel, B., Kramer, A., Ries, A. and Gurny, R. (2006) Microenvironmental pH and microviscosity inside pH-controlled matrix tablets: an EPR imaging study. J Control Release, 112, 72–78.

    Article  CAS  Google Scholar 

  62. 62. Tatavarti, A.S., Mehta, K.A., Augsburger, L.L. and Hoag, S.W. (2004) Influence of methacrylic and acrylic acid polymers on the release performance of weakly basic drugs from sustained release hydrophilic matrices. J Pharm Sci, 93, 2319–2331.

    Article  CAS  Google Scholar 

  63. 63. Siepe, S., Lueckel, B., Kramer, A., Ries, A. and Gurny, R. (2006) Strategies for the design of hydrophilic matrix tablets with controlled microenvironmental pH. Int J Pharm, 316, 14–20.

    Article  CAS  Google Scholar 

  64. 64. Streubel, A., Siepmann, J., Dashevsky, A. and Bodmeier, R. (2000) pH-independent release of a weakly basic drug from water-insoluble and -soluble matrix tablets. J Control Release, 67, 101–110.

    Article  CAS  Google Scholar 

  65. 65. Gabr, K. (1992) Effect of organic acids on release patterns of weakly basic drugs from inert sustained release matrix tablets. Eur J Pharm Biopharm, 38, 199–202.

    CAS  Google Scholar 

  66. 66. Varma, M.V.S., Kaushal, A.M. and Garg, S. (2005) Influence of micro-environmental pH on the gel layer behavior and release of a weakly basic drug from various hydrophilic matrices. J Control Release, 103, 499–510.

    Article  CAS  Google Scholar 

  67. 67. O'Connor, K.M. and Corrigan, O.I. (2002) Effect of a basic organic excipient on the dissolution of diclofenac salts. J Pharm Sci, 91, 2271–2281.

    Article  Google Scholar 

  68. 68. Rao, V.M., Engh, K. and Qiu, Y. (2003) Design of pH-independent controlled release matrix tablets for acidic drugs. Int J Pharm, 252, 81–86.

    Article  CAS  Google Scholar 

  69. 69. Michelucci, J.J., Sherman, D.M. and DeNeale, R.J. (1990) Sustained release etodolac. US Pat. 4,966,768.

    Google Scholar 

  70. 70. Riis, T., Bauer-Brandl, A., Wagner, T. and Kranz, H. (2007) pH-independent drug release of an extremely poorly soluble weakly acidic drug from multiparticulate extended release formulations. Eur J Pharm Biopharm, 65, 78–84.

    Article  CAS  Google Scholar 

  71. 71. Ruff, M.D., Kalidindi, S.R. and Sutton, J.J.E. (1994) Pharmaceutical composition containing bupropion hydrochloride and a stabilizer. US Pat. 5,358,970.

    Google Scholar 

  72. Methocel cellulose ethers technical handbook. http://www.dow.com/PublishedLiterature/dh_03e3/09002f13803e32e6.pdf?filepath=methocel/pdfs/noreg/192–01062.pdf&from Page=GetDoc.

  73. 73. Mitchell, K., Ford, J.L., Armstrong, D.J., Elliott, P.N., Rostron, C. and Hogan, J.E. (1990) The influence of additives on the cloud point, disintegration and dissolution of hydroxypropyl methylcellulose gels and matrix tablets. Int J Pharm, 66, 233–242.

    Article  CAS  Google Scholar 

  74. 74. Johnson, J.L., Holinej, J. and Williams, M.D. (1993) Influence of ionic strength on matrix integrity and drug release from hydroxypropyl cellulose compacts. Int J Pharm, 90, 151–159.

    Article  CAS  Google Scholar 

  75. Rajabi-Siahboomi, A.R., Nokhodchi, A. and Rubinstein, M.H. (1998) Compaction behaviour of hydrophilic cellulose ether polymers. Pharm Technol, Tableting and Granulation:1998 yearbook, 32–38.

    Google Scholar 

  76. 76. Nokhodchi, A. and Rubinstein, M.H. (2001) An overview of the effects of material and process variables on the compaction and compression properties of hydroxypropylmethyl cellulose and ethylcellulose. STP Pharm Sci, 11, 195–202.

    CAS  Google Scholar 

  77. 77. Liu, C.-H., Chen, S.-C., Kao, Y.-H., Kao, C.-C., Sokoloski, T.D. and Sheu, M.-T. (1993) Properties of hydroxypropylmethylcellulose granules produced by water spraying. Int J Pharm, 100, 241–248.

    Article  CAS  Google Scholar 

  78. Dow excipients, foamed binder technology. http://www.dow.com/dowexcipients/applications/foam.htm.

  79. 79. Melia, C.D., Rajabi-Siahboomi, A., Hodsdon, A.C., Adler, J. and Mitchell, J.R. (1993) Structure and behavior of hydrophilic matrix sustained release dosage forms. 1. The origin and mechanism of formation of gas bubbles in the hydrated surface layer. Int J Pharm, 100, 263–269.

    Article  CAS  Google Scholar 

  80. 80. Nokhodchi, A., Ford, J.L., Rowe, P. and Rubinstein, M.H. (1996) The effects of compression rate and force on the compaction properties of different viscosity grades of hydroxypropylmethylcellulose 2208. Int J Pharm, 129, 21–31.

    Article  CAS  Google Scholar 

  81. 81. Nokhodchi, A., Ford, J.L., Rowe, P.H. and Rubinstein, M.H. (1996) The effect of moisture on the heckel and energy analysis of hydroxypropylmethylcellulose 2208 (HPMC K4M). J Pharm Pharmacol, 48, 1122–1127.

    CAS  Google Scholar 

  82. 82. Nokhodchi, A., Ford, J.L., Rowe, P.H. and Rubinstein, M.H. (1996) The influence of moisture content on the consolidation properties of hydroxypropylmethylcellulose K4M (HPMC 2208). J Pharm Pharmacol, 48, 1116–1121.

    CAS  Google Scholar 

  83. 83. Huang, Y., Knanvilkar, K., Moore, A.D. and Hilliard-Lott, M. (2003) Effects of manufacturing variables on in vitro dissolution characteristics of extended release tablets formulated with hydroxypropylmethylcellulose. Drug Dev Ind Pharm, 29, 79–88.

    Article  CAS  Google Scholar 

  84. 84. Reynolds, T.D., Mitchelle, S.A. and Balwinski, K.M. (2002) Investigation of the effect of tablet surface area/volume on drug release from hydroxypropylmethylcellulose controlled release matrix tablets. Drug Dev Ind Pharm, 28, 457–477.

    Article  CAS  Google Scholar 

  85. 85. Siepmann, J., Kranz, H., Peppas, N.A. and Bodmeier, R. (2000) Calculation of the required size and shape of hydroxypropyl methylcellulose matrices to achieve desired drug release profiles. Int J Pharm, 201, 151–164.

    Article  CAS  Google Scholar 

  86. 86. Colombo, P., Conte, U., Gazzaniga, A., Maggi, L., Sangalli, M.E., Peppas, N.A. and Manna, A.L. (1990) Drug release modulation by physical restrictions of matrix swelling. Int J Pharm, 63, 43–48.

    Article  CAS  Google Scholar 

  87. 87. Colombo, P., Catellani, P., Peppas, N.A., Maggi, L. and Conte, U. (1992) Swellling characteristics of hydrophilic matrices for controlled release: new dimensionless number to describe the swelling and release behavior. Int J Pharm, 88, 99–109.

    Article  CAS  Google Scholar 

  88. 88. Losi, E., Bettini, R., Santi, P., Sonvico, F., Colombo, G., Lofthus, K., Colombo, P. and Peppas, N.A. (2006) Assemblage of novel release modules for the development of adaptable drug delivery systems. J Control Release, 111, 212–218.

    Article  CAS  Google Scholar 

  89. Levina, M., Wan, P., Jordan, M. Rajabi-Siahboomi, A.R. (2003) The influence of film coatings on performance of hypromellose matrices. http://www.colorcon.com/pharma/mod_rel/methocel/literature/infl_fc_hypromel.pdf.

  90. Vuong, H., Levina, M. and Rajabi-Siahboomi, A.R. (2006) The effect of film coating and storage conditions on the performance of metformin HCl 500 mg extended release hypromellose matrices. http://www.colorcon.com/pharma/mod_rel/methocel/literature/fc+stor_perf_metformin.pdf.

  91. Tiwari, S.B., Murthy, T.K., Pai, M.R., Mehta, P.R. and Chowdary, P.B. (2003) Controlled release formulation of tramadol hydrochloride using hydrophilic and hydrophobic matrix system. AAPS PharmSciTech, 4, Article 31.

    Google Scholar 

  92. Dias, V.D., Gothoskar, A.V., Fegely, K. and Rajabi-Siahboomi, A.R. (2006) Modulation of drug release from hypromellose (HPMC) matrices: suppression of the initial burst effect. http://www.colorcon.com/pharma/mod_rel/methocel/literature/drug_rel_hpmc_burst_suppression.pdf.

  93. 93. Takka, S., Rajbhandari, S. and Sakr, A. (2001) Effect of ionic polymers on the release of propranolol hydrochloride from matrix tablets. Eur J Pharm Biopharm, 52, 75–82.

    Article  CAS  Google Scholar 

  94. 94. Melia, C.D. (1991) Hydrophilic matrix sustained release systems based on polysaccharide carriers. Crit Rev Ther Drug Carrier Syst, 8, 395–421.

    CAS  Google Scholar 

  95. 95. Bonferoni, M.C., Rossi, S., Ferrari, F., Stavik, E., Pena-Romero, A. and Caramella, C. (2000) Factorial analysis of the influence of dissolution medium on drug release from carrageenan-diltiazem complexes. AAPS PharmSciTech, 1, E15.

    Article  CAS  Google Scholar 

  96. 96. Sinha, V.R., Singh, A., Singh, S. and Bhinge, J.R. (2007) Compression coated systems for colonic delivery of 5-flurouracil. J Pharm Pharmacol, 59, 359–365.

    Article  CAS  Google Scholar 

  97. HyperStart® formulation service. http://www.colorcon.com/pharma/mod_rel/methocel/hyperstart_text.html.

  98. 98. Fegely, K., Scattergood, L. and Rajabi-Siahboomi, A. (2005) Development of verapamil (240 mg) extended release formulation using Methocel hydrophilic matrices [Application data sheet]. Colorcon Inc., West Point, PA.

    Google Scholar 

  99. Isoptin SR, Knoll, verapamil hydrochloride, antihypertensive agent. http://www.rxmed. com/b.main/b2.pharmaceutical/b2.1.monographs/CPS-%20Monographs/CPS-%20 (General%20Monographs-%20I)/ISOPTIN%20SR.html.

  100. Covera HS (verapamil hydrochloride) extended release tablets, controlled-onset. http://www.pfizer.com/pfizer/download/uspi_covera.pdf.

  101. 101. Palmer, F., Levina, M. and Rajabi-Siahboomi, A. (2005) Development of carbamazepine (200 mg) extended release formulation using Methocel hydrophilic matrices [Application data sheet]. Colorcon Inc., West Point, PA.

    Google Scholar 

  102. 102. Owen, R.T. (2006) Extended-release carbamazepine for acute bipolar mania: a review. Drugs Today (Barc), 42, 283–289.

    Article  CAS  Google Scholar 

  103. Palmer, F., Levina, M. and Rajabi-Siahboomi, A.R. (2005) Investigation of a directly compressible metformin HCl 500 mg extended release formulation based on hypromellose. http://www.colorcon.com/pharma/mod_rel/methocel/literature/metformin_500mg.pdf.

Download references

Acknowledgements

The authors thank Kurt Fegely, Dr. Marina Levina, Dr. Abhijit Gothoskar and Viena Diaz (all from Colorcon, Inc.) for their experimental contributions to the data presented in this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Tiwari, S.B., Rajabi-Siahboomi, A.R. (2008). Extended-Release Oral Drug Delivery Technologies: Monolithic Matrix Systems. In: Jain, K.K. (eds) Drug Delivery Systems. Methods in Molecular Biology™, vol 437. Humana Press. https://doi.org/10.1007/978-1-59745-210-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-210-6_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-891-1

  • Online ISBN: 978-1-59745-210-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics