Skip to main content

Pharmacogenomics in Gastrointestinal Disorders

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 448))

Summary

It is anticipated that unraveling the human genome will have a direct impact on the management of specific diseases. Variations or mutations in genes involved in drug metabolism or disease pathophysiology in gastroenterology and hepatology are expected to have effect on response to therapy. The spectrum of diseases is vast. Thus, we focus this review on clinical pharmacogenetics of inflammatory bowel disease, Helicobacter pylori infections, gastroesophageal reflux disease, irritable bowel syndrome, liver transplantation, and colon cancer. Although only a few genotyping tests are used regularly in clinical practice, we anticipate that in the future there will be more routine use of many of the tests described in this review.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Roden, D. M., Altman, R. B., Benowitz, N. L., et al. (2006) Pharmacogenomics: challenges and opportunities. Ann. Intern. Med. 145, 749–257.

    PubMed  Google Scholar 

  2. Locke, G. R., III, Taller, N. J., Fett, S. L., Zinsmeister, A. R., and Melton, L. J., III. (1997) Prevalence and clinical spectrum of gastroesophageal reflux: a population-based study in Olmsted County, Minnesota. Gastroenterology. 112, 1448–1456.

    Article  PubMed  Google Scholar 

  3. Kurata, J. H., and Nogawa, A. N. (1997) Meta-analysis of risk factors for peptic ulcer. Nonsteroidal anti-inflammatory drugs, Helicobacter pylori, and smoking. J. Clin. Gastroenterol. 24, 2–17.

    Article  CAS  PubMed  Google Scholar 

  4. Pounder, R. E., and Ng, D. (1995) The prevalence of Helicobacter pylori infection in different countries. Aliment. Pharmacol. Ther. 9, 33–39.

    PubMed  Google Scholar 

  5. Marshall, B. J., Goodwin, C. S., Warren, J. R., et al. (1988) Prospective double-blind trial of duodenal ulcer relapse after eradication of Campylobacter pylori. Lancet. 2, 1437–1442.

    Article  CAS  PubMed  Google Scholar 

  6. Rauws, E. A., and Tytgat, G. N. (1990) Cure of duodenal ulcer associated with eradication of Helicobacter pylori. Lancet. 335, 1233–1235.

    Article  CAS  PubMed  Google Scholar 

  7. Howden, C. W., Henning, J. M., Huang, B., Lukasik, N., and Freston, J. W. (2001) Management of heartburn in a large, randomized, community-based study: comparison of four therapeutic strategies. Am. J. Gastroenterol. 96, 1704–1710.

    Article  CAS  PubMed  Google Scholar 

  8. Van Zyl, J., Van Rensburg, C., Vieweg, W., and Fischer, R. (2004) Efficacy and safety of pantoprazole vs ranitidine in the treatment of patients with symptomatic gastroesophageal reflux disease. Digestion. 70, 61–69.

    Article  PubMed  Google Scholar 

  9. Farley, A., Wruble, L. D., and Humphries, T. J. (2000) Rabeprazole vs ranitidine for the treatment of erosive gastroesophageal reflux disease: a double-blind, randomized clinical trial. Raberprazole Study Group. Am. J. Gastroenterol. 95, 1894–1899.

    Article  CAS  PubMed  Google Scholar 

  10. Richter, J. E., Campbell, D. R., Kahrilas, P. J., Huang, B., and Fludas, C. (2000) Lansoprazole compared with ranitidine for the treatment of nonerosive gastroesophageal reflux disease. Arch. Intern. Med. 160, 1803–1809.

    Article  CAS  PubMed  Google Scholar 

  11. Klotz, U., Schwab, M., and Treiber, G. (2004) CYP2C19 polymorphism and proton pump inhibitors. Basic Clin. Pharmacol. Toxicol. 95, 2–8.

    CAS  PubMed  Google Scholar 

  12. Kita, T., Sakaeda, T., Baba, T., et al. (2003) Different contribution of CYP2C19 in the in vitro metabolism of three proton pump inhibitors. Biol. Pharm. Bull. 26, 386–390.

    Article  CAS  PubMed  Google Scholar 

  13. Ishizaki, T., and Horai, Y. (1999) Review article: cytochrome P450 and the metabolism of proton pump inhibitors–emphasis on rabeprazole. Aliment. Pharmacol. Ther. 13, 27–36.

    Article  CAS  PubMed  Google Scholar 

  14. Shimatani, T., Inoue, M., Kuroiwa, T., et al. (2006) Acid-suppressive effects of rabeprazole, omeprazole, and lansoprazole at reduced and standard doses: a crossover comparative study in homozygous extensive metabolizers of cytochrome P450 2C19. Clin. Pharmacol. Ther. 79, 144–152.

    Article  CAS  PubMed  Google Scholar 

  15. De Morais, S. M., Wilkinson, G. R., Blaisdell, J., et al. (1994) The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J. Biol. Chem. 269, 15419–15422.

    PubMed  Google Scholar 

  16. De Morais, S.M., Wilkinson, G.R., Blaisdell, J., et al. (1994) Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese. Mol. Pharmacol. 46, 594–598.

    PubMed  Google Scholar 

  17. Ferguson, R. J., De Morais, S. M., Benhamou, S., et al. (1998) A new genetic defect in human CYP2C19: mutation of the initiation codon is responsible for poor metabolism of S-mephenytoin. J. Pharmacol. Exp. Ther. 284, 356–361.

    CAS  PubMed  Google Scholar 

  18. Ibeanu, G. C., Blaisdell, J., Ghanayem, B. I., et al. (1998) An additional defective allele, CYP2C19*5, contributes to the S-mephenytoin poor metabolizer phenotype in Caucasians. Pharmacogenetics. 8, 129–135.

    Article  CAS  PubMed  Google Scholar 

  19. Blaisdell, J., Mohrenweiser, H., Jackson, J., et al. (2002) Identification and functional characterization of new potentially defective alleles of human CYP2C19. Pharmacogenetics. 12, 703–711.

    Article  CAS  PubMed  Google Scholar 

  20. OMIM record *124020. Available at www.ncbi.nlm.nih.gov.

    Google Scholar 

  21. Furuta, T., Shirai, N., Watanabe, F., et al. (2002) Effect of cytochrome P4502C19 genotypic differences on cure rates for gastroesophageal reflux disease by lansoprazole. Clin. Pharmacol. Ther. 72, 453–460.

    Article  CAS  PubMed  Google Scholar 

  22. Kawamura, M., Ohara, S., Koike, T., et al. (2003) The effects of lansoprazole on erosive reflux oesophagitis are influenced by CYP2C19 polymorphism. Aliment. Pharmacol. Ther. 17, 965–973.

    Article  CAS  PubMed  Google Scholar 

  23. Chong, E., and Ensom, M. H. (2003) Pharmacogenetics. of the proton pump inhibitors: a systematic review. Pharmacotherapy. 23, 460–471.

    Article  CAS  PubMed  Google Scholar 

  24. Schwab, M., Schaeffeler, E., Klotz, U., and Treiber, G. (2004) CYP2C19 polymorphism is a major predictor of treatment failure in white patients by use of lansoprazole-based quadruple therapy for eradication of Helicobacter pylori. Clin. Pharmacol. Ther. 76, 201–209.

    Article  CAS  PubMed  Google Scholar 

  25. Juran, B., Egan, L., and Lazaridis, K. (2006) The AmpliChip CYP450 test: principles, challenges, and future clinical utility in digestive disease. Clin. Gastroenterol. Hepatol. 4, 822–830.

    Article  CAS  PubMed  Google Scholar 

  26. Loftus, E. V., Jr. (2004) Clinical epidemiology of inflammatory bowel disease: Incidence, prevalence, and environmental influences. Gastroenterology. 126, 1504–1517.

    Article  PubMed  Google Scholar 

  27. Ahmad, T., Satsangi, J., McGovern, D., Bunce, M., and Jewell, D. P. (2001) Review article: the genetics of inflammatory bowel disease. Aliment. Pharmacol. Ther. 15, 731–748.

    Article  CAS  PubMed  Google Scholar 

  28. Colombel, J. F. (2003) The CARD15 (also known as NOD2) gene in Crohn's disease: are there implications for current clinical practice? Clin. Gastroenterol. Hepatol. 1, 5–9.

    Article  CAS  PubMed  Google Scholar 

  29. Dubinsky, M. C. (2004) Azathioprine, 6-mercaptopurine in inflammatory bowel disease: pharmacology, efficacy, and safety. Clin. Gastroenterol. Hepatol. 2, 731–743.

    Article  CAS  PubMed  Google Scholar 

  30. Su, C., and Lichtenstein, G. R. (2004) Treatment of inflammatory bowel disease with azathioprine and 6-mercaptopurine. Gastroenterol. Clin. North Am. 33, 209–234.

    Article  PubMed  Google Scholar 

  31. Tai, H. L., Krynetski, E. Y., Schuetz, E. G., Yanishevski, Y., and Evans, W. E. (1997) Enhanced proteolysis of thiopurine S-methyltransferase (TPMT) encoded by mutant alleles in humans (TPMT*3A, TPMT*2): mechanisms for the genetic polymorphism of TPMT activity. Proc. Natl. Acad. Sci. U. S. A, 94, 6444–6449.

    Article  CAS  PubMed  Google Scholar 

  32. Roberts, R. L., Barclay, M. L., Gearry, R. B., and Kennedy, M. A. (2004) A multiplexed allele-specific polymerase chain reaction assay for the detection of common thiopurine S-methyltransferase (TPMT) muta tions. Clin. Chim. Acta. 341, 49–53.

    Article  CAS  PubMed  Google Scholar 

  33. Weinshilboun, R.M., and Sladek, S. L. (1980) Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am. J. Hum. Genet. 32, 651–662.

    Google Scholar 

  34. Winter, J., Walker, A., Shapiro, D., et al. (2004) Cost-effectiveness of thiopurine methyltrans-ferase genotype screening in patients about to commence azathioprine therapy for treatment of inflammatory bowel disease. Aliment. Pharmacol. Ther. 20, 593–599.

    Article  CAS  PubMed  Google Scholar 

  35. Colombel, J. F., Ferrari, N., Debuysere, H., et al. (2000) Genotypic analysis of thiopurine S-methyltransferase in patients with Crohn's disease and severe myelosuppression during azathioprine therapy. Gastroenterology. 118, 1025–1030.

    Article  CAS  PubMed  Google Scholar 

  36. De Ridder, L., Van Dieren, J. M., Van Deventer, H. J., et al. (2006) Pharmacogenetics. of thiopurine therapy in paediatric IBD patients. Aliment. Pharmacol. Ther. 23, 1137–1141.

    Article  PubMed  Google Scholar 

  37. Derijks, L. J., Gilissen, L. P., Engels, L. G, et al. (2004) Pharmacokinetics of 6-mercaptopu-rine in patients with inflammatory bowel disease: implications for therapy. Ther. Drug Monit. 26, 311–318.

    Article  CAS  PubMed  Google Scholar 

  38. Dubinsky, M. C., Yang, H., Hassard, P. V., et al. (2002) 6-MP metabolite profiles provide a biochemical explanation for 6-MP resistance in patients with inflammatory bowel disease. Gastroenterology. 122, 904–915.

    Article  CAS  PubMed  Google Scholar 

  39. Ansari, A., Hassan, C., Duley, J., et al. (2002) Thiopurine methyltransferase activity and the use of azathioprine in inflammatory bowel disease. Aliment. Pharmacol. Ther. 16, 1743–1750.

    Article  CAS  PubMed  Google Scholar 

  40. Sumi, S., Marinaki, A. M., Arenas, M., et al. (2002) Genetic basis of inosine triphosphate pyrophosphohydrolase deficiency. Hum. Genet. 111, 360–367.

    Article  CAS  PubMed  Google Scholar 

  41. Marinaki, A. M., Ansari, A., Duley, J. A., et al. (2004) Adverse drug reactions to azathioprine therapy are associated with polymorphism in the gene encoding inosine triphosphate pyrophosphatase (ITPase). Pharmacogenetics. 14, 181–187.

    Article  CAS  PubMed  Google Scholar 

  42. Gearry, R. B., Roberts, R. L., Barclay, M. L., and Kennedy, M. A. (2004) Lack of association between the ITPA 94C>A polymorphism and adverse effects from azathioprine. Pharmacogenetics. 14, 779>781.

    Article  CAS  PubMed  Google Scholar 

  43. Allorge, D., Hamdan, R., Broly, F., Libersa, C., and Colombel, J. F. (2005) ITPA genotyping test does not improve detection of Crohn' disease patients at risk of azathioprine/6-mercap-topurine induced myelosuppression. Gut. 54, 565–568.

    Article  CAS  PubMed  Google Scholar 

  44. Van Dieren, J. M., Van Vuuren, A. J, Kusters, J. G, et al. (2005) ITPA genotyping is not predictive for the development of side effects in AZA treated inflammatory bowel disease patients. Gut. 54, 1664.

    PubMed  Google Scholar 

  45. Zelinkova, Z., Derijks, L. J., Stokkers, P. C., et al. (2006) Inosine triphosphate pyrophos-phatase and thiopurine s-methyltransferase genotypes relationship to azathioprine-induced myelosuppression. Clin. Gastroenterol. Hepatol. 4, 44–49.

    Article  CAS  PubMed  Google Scholar 

  46. Ricart, E., Taylor, W. R., Loftus, E. V., et al. (2002) N-Acetyltransferase 1 and 2 genotypes do not predict response or toxicity to treatment with mesalamine and sulfasalazine in patients with ulcerative colitis. Am. J. Gastroenterol. 97, 1763–1768.

    Article  CAS  PubMed  Google Scholar 

  47. Shetty, A., and Forbes, A. (2002) Pharmacogenomics of response to anti-tumor necrosis factor therapy in patients with Crohn's disease. Am. J. Pharmacogenomics. 2, 215–221.

    Article  CAS  PubMed  Google Scholar 

  48. Louis, E., Vermeire, S., Rutgeerts, P., et al. (2002) A positive response to infliximab in Crohn disease: association with a higher systemic inflammation before treatment but not with −308 TNF gene polymorphism. Scand. J. Gastroenterol. 37, 818–824.

    CAS  PubMed  Google Scholar 

  49. Mascheretti, S., Hampe, J., Kuhbacher, T., et al. (2002) Pharmacogenetic investigation of the TNF/TNF-receptor system in patients with chronic active Crohn's disease treated with inflixi-mab. Pharmacogenomics J. 2, 127–136.

    Article  CAS  PubMed  Google Scholar 

  50. Hlavaty, T., Pierik, M., Henckaerts, L., et al. (2005) Polymorphisms in apoptosis genes predict response to infliximab therapy in luminal and fistulizing Crohn's disease. Aliment. Pharmacol. Ther. 22, 613–626.

    Article  CAS  PubMed  Google Scholar 

  51. Dideberg, V., Theatre, E., Farnir, F., et al. (2006) The TNF/ADAM 17 system: implication of an ADAM 17 haplotype in the clinical response to infliximab in Crohn's disease. Pharmacogenet. Genomics. 16, 727–734.

    Article  CAS  PubMed  Google Scholar 

  52. Mascheretti, S., Hampe, J., Croucher, P. J., et al. (2002) Response to infliximab treatment in Crohn's disease is not associated with mutations in the CARD15 (NOD2) gene: an analysis in 534 patients from two multicenter, prospective GCP-level trials NOD2/CARD15 does not influence response to infliximab in Crohn's disease. Pharmacogenetics. 12, 509–515.

    Article  CAS  PubMed  Google Scholar 

  53. Vermeire, S., Louis, E., Rutgeerts, P., et al. (2002) NOD2/CARD15 does not influence response to infliximab in Crohn's disease. Gastroenterology. 123, 106–111.

    Article  CAS  PubMed  Google Scholar 

  54. Saito, Y. A., Schoenfeld, P., and Locke, G. R., III. (2002) The epidemiology of irritable bowel syndrome in North America: a systematic review. Am. J. Gastroenterol. 97, 1910–1915.

    PubMed  Google Scholar 

  55. Kozma, C. M., Barghout, V., Slaton, T., Frech, F., and Reeder, C.E. (2002) A comparison of office-based physician visits for irritable bowel syndrome and for migraine and asthma. Manag. Care Interface. 15, 40–43, 49.

    PubMed  Google Scholar 

  56. Drossman, D. A., Camilleri, M., Mayer, E. A., and Whitehead, W. E. (2002) AGA technical review on irritable bowel syndrome. Gastroenterology. 123, 2108–2131.

    Article  PubMed  Google Scholar 

  57. Gershon, M. D. (2004) Review article: serotonin receptors and transporters–roles in normal and abnormal gastrointestinal motility. Aliment. Pharmacol. Ther. 20, 3–14.

    Article  CAS  PubMed  Google Scholar 

  58. Viramontes, B. E., Camilleri, M., McKinzie, S., Pardi, D. S., Burton, D., and Thomforde, G. M. (2001) Gender-related differences in slowing colonic transit by a 5-HT3 antagonist in subjects with diarrhea-predominant irritable bowel syndrome. Am. J. Gastroenterol. 96, 2671–2676.

    Article  CAS  PubMed  Google Scholar 

  59. Chen, J. J., Li, Z., Pan, H., et al. (2001) Maintenance of serotonin in the intestinal mucosa and ganglia of mice that lack the high-affinity serotonin transporter: abnormal intestinal motility and the expression of cation transporters. J. Neurosci. 21, 6348–6361.

    CAS  PubMed  Google Scholar 

  60. Lesch, K. P, Balling, U., Gross, J., et al. (1994) Organization of the human serotonin transporter gene. J. Neural Transm. Gen. Sect. 95, 157–162.

    Article  CAS  PubMed  Google Scholar 

  61. Lesch, K. P., Bengel, D., Heils, A., et al. (1996) Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science. 274, 1527–1531.

    Article  CAS  PubMed  Google Scholar 

  62. Yeo, A., Boyd, P., Lumsden, S., et al. (2004) Association between a functional polymorphism in the serotonin transporter gene and diarrhoea predominant irritable bowel syndrome in women. Gut. 53, 1452–1458.

    Article  CAS  PubMed  Google Scholar 

  63. Camilleri, M., Atanasova, E., Carlson, P. J., et al. (2002) Serotonin-transporter polymorphism. Pharmacogenetics in diarrhea-predominant irritable bowel syndrome. Gastroenterology. 123, 425–432.

    Article  CAS  PubMed  Google Scholar 

  64. Li, Y. Y., Nie, Y. Q., Xie, J., Tan, H. Z., Zhou, Y. J., and Wang, H. (2006) Serotonin transporter gene polymorphisms in irritable bowel syndrome and their impact on tegaserod treatment. Zhonghua Nei Ke Za Zhi. 45, 552–555.

    CAS  PubMed  Google Scholar 

  65. Organ procurement and transplantation notebook. Available at: www.optn.org.

    Google Scholar 

  66. OMIM record *124010. Available at: www.ncbi.nlm.nih.gov.

    Google Scholar 

  67. Rebbeck, T. R., Jaffe, J. M., Walker, A. H., Wein, A. J., and Malkowicz, S. B. (1998) Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J. Natl. Cancer Inst. 90, 1225–1229.

    Article  CAS  PubMed  Google Scholar 

  68. Amirimani, B., Ning, B., Deitz, A. C., et al. (2003) Increased transcriptional activity of the CYP3A4*1B promoter variant. Environ. Mol. Mutagen. 42, 299–305.

    Article  CAS  PubMed  Google Scholar 

  69. Hesselink, D. A., Van Schaik, R. H., Van der Heiden, I. P., et al. (2003) Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin. Pharmacol. Ther. 74, 245–254.

    Article  CAS  PubMed  Google Scholar 

  70. Hesselink, D. A., Van Gelder, T., Van Schaik, R. H., et al. (2004) Population pharmacokinet-ics of cyclosporine in kidney and heart transplant recipients and the influence of ethnicity and genetic polymorphisms in the MDR-1, CYP3A4, and CYP3A5 genes. Clin. Pharmacol. Ther. 76, 545–556.

    Article  CAS  PubMed  Google Scholar 

  71. Kuehl, P., Zhang, J., Lin, Y., et al. (2001) Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat. Genet. 27, 383–391.

    Article  CAS  PubMed  Google Scholar 

  72. Zhao, Y., Song, M., Guan, D., et al. (2005) Genetic polymorphisms of CYP3A5 genes and concentration of the cyclosporine and tacrolimus. Transplant. Proc. 37, 178–181.

    Article  CAS  PubMed  Google Scholar 

  73. Thiebaut, F., Tsuruo, T., Hamada, H., et al. (1987) Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc. Natl. Acad. Sci. U. S. A. 84, 7735–7738.

    Article  CAS  PubMed  Google Scholar 

  74. Hoffmeyer, S., Burk, O., Von Richter, O., et al. (2000) Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc. Natl. Acad. Sci. U. S. A. 97, 3473–3478.

    Article  CAS  PubMed  Google Scholar 

  75. Bonhomme-Faivre, L., Devocelle, A., Saliba, F., et al. (2004) MDR-1 C3435T polymorphism influences cyclosporine a dose requirement in liver-transplant recipients. Transplantation. 78, 21–25.

    Article  CAS  PubMed  Google Scholar 

  76. Jin, J., Wu, L.H., Wang, W.L., et al. (2005) Impact of multidrug resistance 1 gene polymorphism on tacrolimus dose and concentration-to-dose ratio in Chinese liver transplantation recipients. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 22, 616–620.

    CAS  PubMed  Google Scholar 

  77. Centers for Disease Control and Prevention Web site. Available at: www.cdc.gov.

    Google Scholar 

  78. Parkin, D. M., Pisani, P., and Ferlay, J. (1999) Global cancer statistics. CA. Cancer J. Clin. 49, 31–64.

    Article  Google Scholar 

  79. Moore, H. C., and Haller, D. G. (1999) Adjuvant therapy of colon cancer. Semin. Oncol. 26, 545–555.

    CAS  PubMed  Google Scholar 

  80. Stewart, J. M., and Zalcberg, J. R. (1998) Update on adjuvant treatment of colorectal cancer. Curr. Opin. Oncol. 10, 367–374.

    Article  CAS  PubMed  Google Scholar 

  81. Salonga, D., Danenberg, K. D., Johnson, M., et al. (2000) Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymi-dylate synthase, and thymidine phosphorylase. Clin. Cancer Res. 6, 1322–1327.

    CAS  PubMed  Google Scholar 

  82. Milano, G., Etienne, M. C., Pierrefite, V., et al. (1999) Dihydropyrimidine dehydrogenase deficiency and fluorouracil-related toxicity. Br. J. Cancer. 79, 627–630.

    Article  CAS  PubMed  Google Scholar 

  83. Wei, X., McLeod, H. L., McMurrough, J., Gonzalez, F. J., and Fernandez-Salguero, P. (1996) Molecular basis of the human dihydropyrimidine dehydrogenase deficiency and 5-fluorour-acil toxicity. J. Clin. Invest. 98, 610–615.

    Article  CAS  PubMed  Google Scholar 

  84. Ridge, S. A., Sludden, J., Brown, O., et al. (1998) Dihydropyrimidine dehydrogenase Pharmacogenetics. in Caucasian subjects. Br. J. Clin. Pharmacol. 46, 151–156.

    Article  CAS  PubMed  Google Scholar 

  85. Horie, N., Aiba, H., Oguro, K., Hojo, H., and Takeishi, K. (1995) Functional analysis and DNA polymorphism of the tandemly repeated sequences in the 5 -terminal regulatory region of the human gene for thymidylate synthase. Cell Struct. Funct. 20, 191–197.

    Article  CAS  PubMed  Google Scholar 

  86. Kawakami, K., Omura, K., Kanehira, E., and Watanabe, Y. (1999) Polymorphic tandem repeats in the thymidylate synthase gene is associated with its protein expression in human gastrointestinal cancers. Anticancer Res. 19, 3249–3252.

    CAS  PubMed  Google Scholar 

  87. Popat, S., Matakidou, A., and Houlston, R. S. (2004) Thymidylate synthase expression and prognosis in colorectal cancer: a systematic review and meta-analysis. J. Clin. Oncol. 22, 529–536.

    Article  CAS  PubMed  Google Scholar 

  88. Ando, Y., Saka, H., Ando, M., et al. (2000) Polymorphisms of UDP-glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetic analysis. Cancer Res. 60, 6921–6926.

    CAS  PubMed  Google Scholar 

  89. Iyer, L., Das, S., Janisch, L., et al. (2002) UGT1A1*28 polymorphism as a determinant of iri-notecan disposition and toxicity. Pharmacogenomics J. 2, 43–47.

    Article  CAS  PubMed  Google Scholar 

  90. Han, J. Y., Lim, H. S., Shin, E. S., et al. (2006) Comprehensive analysis of UGT1A polymorphisms predictive for pharmacokinetics and treatment outcome in patients with non-small-cell lung cancer treated with irinotecan and cisplatin. J. Clin. Oncol. 24, 2237–2244.

    Article  CAS  PubMed  Google Scholar 

  91. Egan, L. J., Derijks, L. J., and Hommes, D. W. (2006) Pharmacogenomics in inflammatory bowel disease. Clin. Gastroenterol. Hepatol. 4, 21–28.

    Article  CAS  PubMed  Google Scholar 

  92. Food and Drug Administration. FDA clears genetic test that advances personalized medicine. Test helps determine safety of drug therapy. Available at: http://www.fda.gov/bbs/topics/ NEWS/2005/NEW01220.html. Accessed July 27, 2006.

    Google Scholar 

  93. Stoehlmacher, J., Park, D. J., Zhang, W., et al. (2002) Association between glutathione S-transferase P1, T1, and M1 genetic polymorphism and survival of patients with metastatic colorectal cancer. J. Natl. Cancer Inst. 94, 936–942.

    CAS  PubMed  Google Scholar 

  94. Lu, Y., Kow-Yin Kham, S., Foo, T. C., Hany, A., Quah, T. C. and Eng-Juh Yeoh, A. (2006, October 26) Genotyping of eight polymorphic genes encoding drug-metabolizing enzymes and transporters using a customized oligonucleotide array. Anal. Biochem. Epub ahead of print.

    Google Scholar 

Download references

Acknowledgments

Supported in part by research grants to Dr. Camilleri (DK-54681, DK-67071, and DK-02638) and Dr. Saito (DK-066271) from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Camilleri, M., Saito, Y.A. (2008). Pharmacogenomics in Gastrointestinal Disorders. In: Yan, Q. (eds) Pharmacogenomics in Drug Discovery and Development. Methods in Molecular Biology™, vol 448. Humana Press. https://doi.org/10.1007/978-1-59745-205-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-205-2_13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-887-4

  • Online ISBN: 978-1-59745-205-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics