Skip to main content

In Vitro Systems for Studying the Interaction of Fungal Pathogens with Primary Cells from the Mammalian Innate Immune System

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 470))

Abstract

The incidence of invasive fungal diseases has increased over the past decades, particularly in relation with the increase of immunocompromised patient cohorts (e.g., HIV-infected patients, transplant recipients, immunosuppressed patients with cancer). Opportunistic fungal pathogens such as Candida spp. are most often associated with serious systemic infections. Currently available antifungal drugs are rather unspecific, often with severe side effects. In some cases, their prophylactic use has favored emergence of resistant fungal strains. Major antifungal drugs target the biosynthesis of lipid components of the fungal plasma membrane or the assembly of the cell wall. For a more specific and efficient treatment and prevention of fungal infection, new therapeutic strategies are needed, including strengthening or stimulation of the residual host immune response. Achieving such a goal requires a better understanding of factors important for the defense and the survival of the host combating Candida spp. Where possible, primary cultures of mammalian immune cells of the innate immune system constitute a better suited model than transformed cell lines to study host-pathogen response and virulence. Hence, in vitro primary cell culture systems are a good strategy for a first screening of mutant strains of Candida spp. to identify virulence traits with regard to host cell response and pathogen invasion.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Roeder A, Kirschning CJ, Rupec RA, Schaller M, Korting HC. Toll-like receptors and innate antifungal responses, Trends Microbiol 2004;12:44–9.

    Article  CAS  PubMed  Google Scholar 

  2. Netea MG, Van der Graaf C, Van der Meer JW, Kullberg BJ, Recognition of fungal pathogens by Toll-like receptors: Toll-like receptors and the host defense against microbial pathogens: bringing specificity to the innate-immune system, Eur J Clin Microbiol Infect Dis 2004;23:672–6.

    Article  CAS  PubMed  Google Scholar 

  3. Mencacci A, Cenci E, Del Sero G, et al, Defective co-stimulation and impaired Th1 development in tumor necrosis factor/lymphotoxin-alpha double-deficient mice infected with Candida albicans. Int Immunol 1998;10:37–48.

    Article  CAS  PubMed  Google Scholar 

  4. Vazquez-Torres A, Jones-Carson J, Wagner RD, Warner T, Balish E, Early resistance of interleukin-10 knock-out mice to acute systemic candidiasis, Infect Immun 1999;67:670–4.

    CAS  PubMed  Google Scholar 

  5. Farah CS, Hu Y, Riminton S, Ashman RB, Distinct roles for interleukin-12p40 and tumour necrosis factor in resistance to oral candidiasis defined by gene-targeting, Oral Microbiol Immunol 2006;21: 252–5.

    Article  CAS  PubMed  Google Scholar 

  6. Vonk AG, Netea MG, van Krieken JH, van der Meer JW, Kullberg BJ, Delayed clearance of intraabdominal abscesses caused by Candida albicans in tumor necrosis factor-alpha- and lymphotoxin-alpha-deficient mice, J Infect Dis 2002;186:1815–22.

    Article  CAS  PubMed  Google Scholar 

  7. Ibata-Ombetta S, Jouault T, Trinel PA, Poulain D, Role of extracellular signal-regulated protein kinase cascade in macrophage killing of Candida albicans. J Leukoc Biol 2001;70:149–54.

    CAS  PubMed  Google Scholar 

  8. Zhong B, Jiang K, Gilvary DL, et al, Human neutrophils utilize a Rac/Cdc42-dependent MAPK pathway to direct intracellular granule mobilization toward ingested microbial pathogens, Blood 2003;101:3240–8.

    Article  CAS  PubMed  Google Scholar 

  9. Choi JH, Choi EK, Park SJ, et al, Impairment of p38 MAPK-mediated cytosolic phospholipase A(2) activation in the kidneys is associated with pathogenicity of Candida albicans. Immunology 2007; 120:173–81.

    Article  CAS  PubMed  Google Scholar 

  10. Zal T, Volkmann A, Stockinger B, Mechanisms of tolerance induction in major histocompatibility complex class II-restricted T cells specific for a blood-borne self-antigen, J Exp Med 1994;180:2089–99.

    Article  CAS  PubMed  Google Scholar 

  11. Gillum AM, Tsay EY, Kirsch DR, Isolation of the Candida albicans gene for orotidine-5´-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations, Mol Gen Genet 1984;198:179–82.

    Article  CAS  PubMed  Google Scholar 

  12. Hull CM, Johnson AD, Identification of a mating type-like locus in the asexual pathogenic yeast Candida albicans. Science 1999;285:1271–5.

    Article  CAS  PubMed  Google Scholar 

  13. Kovarik P, Stoiber D, Novy M, Decker T, Stat1 combines signals derived from IFN-gamma and LPS receptors during macrophage activation, EMBO J 1998;17:3660–8.

    Article  CAS  PubMed  Google Scholar 

  14. Overbergh L, Giulietti A, Valckx D, Decallonne R, Bouillon R, Mathieu C, The use of real-time reverse transcriptase PCR for the quantification of cytokine gene expression, J Biomol Tech 2003;14:33–43.

    CAS  PubMed  Google Scholar 

  15. Pattyn F, Speleman F, De Paepe A, Vandesompele J, RTPrimerDB: the Real-Time PCR primer and probe database, Nucl Acids Res 2003;31:122–3.

    Article  CAS  PubMed  Google Scholar 

  16. Pattyn F, Robbrecht P, De Paepe A, Speleman F, Vandesompele J, RTPrimerDB: the real-time PCR primer and probe database, major update 2006. Nucl Acids Res 2006;34:D684–8.

    Article  CAS  PubMed  Google Scholar 

  17. Hume DA, Gordon S, Optimal conditions for proliferation of bone marrow-derived mouse macrophages in culture: the roles of CSF-1, serum, Ca2+, and adherence, J Cell Physiol 1983;117:189–94.

    Article  CAS  PubMed  Google Scholar 

  18. Inaba K, Inaba M, Romani N, et al, Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor, J Exp Med 1992;176:1693–702.

    Article  CAS  PubMed  Google Scholar 

  19. Herth W, Calcofluor white and Congo red inhibit chitin microfibril assembly of Poterioochromonas: evidence for a gap between polymerization and microfibril formation, J Cell Biol 1980;87:442–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bourgeois, C., Majer, O., Frohner, I., Kuchler, K. (2009). In Vitro Systems for Studying the Interaction of Fungal Pathogens with Primary Cells from the Mammalian Innate Immune System. In: Rupp, S., Sohn, K. (eds) Host-Pathogen Interactions. Methods in Molecular Biology, vol 470. Humana Press. https://doi.org/10.1007/978-1-59745-204-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-204-5_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-886-7

  • Online ISBN: 978-1-59745-204-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics