Skip to main content

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Summary

The identification of cell-surface markers expressed selectively by tumor vasculature is challenging. To get as close to the human disease as possible, investigators have isolated endothelial cells from fresh human tumor specimens and subjected them to RNA-based gene-expression analysis. The data indicate that there are few proteins that distinguish tumor vasculature from normal vasculature and re-enforce the notion that the endothelium is a tissue specialized cell type. Endosialin and tumor endothelial marker 7 (TEM 7) were identified as a cell-surface TEMs. The selective expression of endosialin and TEM 7 by tumor vasculature and stroma has been confirmed. Although the function of endosialin and TEM 7 remains to be elucidated, the expression pattern for this protein may be favorable for cancer therapy. PRL-3 was also identified by SAGE (serial analysis of gene expression) as a TEM. PRL-3 is an intracellular phosphatase that is expressed not only in tumor vasculature but in aggressive disease. SAGE analysis of subpopulations of tumors has provided useful leads for new vascular targets. It remains to the basic scientists to elucidate the function of these proteins and to the “drug hunters” to determine whether these targets can be used in therapeutically meaningful ways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Folkman J. Angiogenesis. Annu Rev Med 2006; 57: 1–18.

    Article  PubMed  CAS  Google Scholar 

  2. Folkman J. Antiangiogenesis in cancer therapy – endostatin and its mechanisms of action. Exp Cell Res 2006; 312: 594–607.

    Article  PubMed  CAS  Google Scholar 

  3. Folkman J. Angiogenesis and apoptosis. Semin Cancer Biol 2003; 13: 159–167.

    Article  PubMed  CAS  Google Scholar 

  4. Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2002; 2: 727–739.

    Article  PubMed  CAS  Google Scholar 

  5. Herbst RS, Onn A, Sandler A. Angiogenesis and lung cancer: prognostic and therapeutic implications. J Clin Oncol 2005; 23: 3243–3256.

    Article  PubMed  CAS  Google Scholar 

  6. Riesterer O, Honer M, Jochum W, Oehler C, Ametamey S, Pruschy M. Ionizing radiation antagonizes tumor hypoxia induced by antiangiogenic treatment. Clin Cancer Res 2006; 12: 3518–3524.

    Article  PubMed  CAS  Google Scholar 

  7. Hida K, Hida Y, Amin DN, Flint AF, Panigrahy D, Morton CC, Klagsbrun M. Tumor-associated endothelial cells with cytogenetic abnormalities. Cancer Res 2004; 64: 8249–8255.

    Article  PubMed  CAS  Google Scholar 

  8. Gasparini G, Longo R, Fanelli M, Teicher BA. Combination of antiangiogenic therapy with other anticancer therapies: results, challenges and open questions. J Clin Oncol 2005; 23: 1295–1311.

    Article  PubMed  CAS  Google Scholar 

  9. Teicher BA. Hypoxia, tumor endothelium and targets for therapy. In: Advances in Experimental Medicine and Biology; eds. P Okunieff, J Williams, Y Chen. Springer: New York NY; 2005; 566: 31–38.

    Google Scholar 

  10. Fiegl H, Millinger S, Goebel G, Muller-Holzner E, Marth C, Laird PW, Widschwendter M. Breast cancer DNA methylation profiles in cancer cells and tumor stroma: association with HER-2/neu status in primary breast cancer. Cancer Res 2006; 66: 29–33.

    Article  PubMed  CAS  Google Scholar 

  11. Weeraratna AT. Discovering causes and cures for cancer from gene expression analysis. Ageing Res Rev 2005; 4: 548–563.

    Article  PubMed  CAS  Google Scholar 

  12. Brentani RR, Carrari DM, Verjovski-Almeida S, Reis EM, Neves EJ, de Souza SJ, Carvalho AF, Brentani H, Reis LFL. Gene expression arrays in cancer research: methods and applications. Crit Rev Oncol/Hematol 2005; 54: 95–105.

    Article  Google Scholar 

  13. Segal E, Friedman N, Kaminski N, Regev A, Koller D. From signatures to models: understanding cancer microarrays. Nat Genet 2005; 37: S38–S45.

    Article  PubMed  CAS  Google Scholar 

  14. Sieben NL, Oosting J, Flanagan AM, Prat J, Roemen GM, Kolkman-Uljee SM, van Eijk R, Cornelisse CJ, Fleuren GJ, van Engeland M. Differential gene expression in ovarian tumors reveals Dusp 4 and Serpina 5 as key regulators for benign behavior of serous borderline tumors. J Clin Oncol 2005; 23: 7257–7264.

    Article  PubMed  CAS  Google Scholar 

  15. Espinosa E, Vara JAF, Redondo A, Sanchez JJ, Hardisson D, Zamora P, Pastrana F, Gomez CP, Martinez B, Suarez A, Calero F, Baron MG. Breast cancer prognosis determined by gene expression profiling: A quantitative reverse transcriptase polymerase chain reaction study. J Clin Oncol 2005; 23: 7278–7285.

    Article  PubMed  CAS  Google Scholar 

  16. Chen C-N, Lin J-J, Chen J JW, Lee P-H, Yang C-Y, Kuo M-L, Chang K-J, Hsieh F-J. Gene expression profile predicts patient survival of gastric cancer after surgical resection. J Clin Oncol 2005; 23: 7286–7295.

    Article  PubMed  CAS  Google Scholar 

  17. Agnelli L, Bicciato S, Mattioli M, Fabri S, Intini D, Verdelli D, Baldini L, Morabito F, Callea V, Lombardi L, Neri A. Molecular classification of multiple myeloma: A distinct transcriptional profile characterizes patients expressing CCND1 and negative for 14q32 translocations. J Clin Oncol 2005; 23: 7296–7306.

    Article  PubMed  CAS  Google Scholar 

  18. Spinola M, Leoni V, Pignatiello C, Conti B, Ravagnani F, Pastorino U, Dragani TA. Functional FGFR4 Gly388Arg polymorphism predicts prognosis in lung adenocarcinoma patients. J Clin Oncol 2005; 23: 7307–7311.

    Article  PubMed  CAS  Google Scholar 

  19. Grundy PE, Breslow NE, Li S, Perlman E, Beckwith JB, Ritchey ML, Shamberger RC, Haase GM, D’Angio GJ, Donaldson M, Coppes MJ, Malogolowkin M, Shearer P, Thomas PRM, Macklis R, Tomlinson G, Huff V, Green DM. Loss of heterozygosity for chromosomes 1p and 16q is an adverse prognostic factor in favorable-histology Wilms tumor: A report from the National Wilms Tumor Study Group. J Clin Oncol 2005; 23: 7312–7321.

    Article  PubMed  CAS  Google Scholar 

  20. Bilke S, Chen Q-R, Westerman F, Schwab M, Catchpoole D, Khan J. Inferring a tumor progression model for neuroblastoma from genomic data. J Clin Oncol 2005; 23: 7322–7331.

    Article  PubMed  CAS  Google Scholar 

  21. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. Serial analysis of gene expression. Science 1995; 270: 484–487.

    Article  PubMed  CAS  Google Scholar 

  22. Porter D, Yao J, Polyak K. SAGE and related approaches for cancer target identification. Drug Discov Today 2006; 11: 110–118.

    Article  PubMed  CAS  Google Scholar 

  23. Beauchamp NJ, van Achterberg TAE, Engelse MA, Pannekoek H, de Vries CJM. Gene expression profiling of resting and activated vascular smooth muscle cells by serial analysis of gene expression and clustering analysis. Genomics 2003; 82: 288–299.

    Article  PubMed  CAS  Google Scholar 

  24. Polyak K, Riggins GJ. Gene discovery using the serial analysis of gene expression technique: implications for cancer research. J Clin Oncol 2001; 19: 2948–2958.

    PubMed  CAS  Google Scholar 

  25. Madden SL, Cook BP, Nacht M, Weber WD, Callahan MR, Jiang Y, Dufault MR, Zhang X, Zhang W, Walter-Yohrling J, Rouleau C, Akmaev VR, Wang CJ, Cao X, St. Martin TB, Roberts BL, Teicher BA, Klinger KW, Stan R-V, Lucey B, Carson-Walter EB, Laterra J, Walter KA. Vascular gene expression in non-neoplastic and malignant brain. Am J Pathol 2004; 165: 601–608.

    PubMed  CAS  Google Scholar 

  26. Parker BS, Argani P, Cook BP, Liangfen H, Chartrand SD, Zhang M, Saha S, Bardelli A, Jiang Y, St. Martin TB, Nacht M, Teicher BA, Klinger KW, Sukumar S, Madden SL. Alterations in vascular gene expression in invasive breast carcinoma. Cancer Res 2004; 64: 7857–7866.

    Article  PubMed  CAS  Google Scholar 

  27. Simon R. Roadmap for developing and validating therapeutically relevant genomic classifiers. J Clin Oncol 2005; 23: 7332–7341.

    Article  PubMed  CAS  Google Scholar 

  28. Bono H, Okazaki Y. The study of metabolic pathways in tumors based on the transcriptome. Semin Cancer Biol 2005; 15: 290–299.

    Article  PubMed  CAS  Google Scholar 

  29. Adler AS, Lin M, Horlings H, Nuyten DSA, van de Vijver MJ, Chang HY. Genetic regulators of large-scale transcriptional signatures in cancer. Nat Genet 2006; 38: 421–430.

    Article  PubMed  CAS  Google Scholar 

  30. Rhodes DR, Chinnaiyan AM. Integrative analysis of the cancer transcriptome. Nat Genet 2005; 37: S31–S37.

    Article  PubMed  CAS  Google Scholar 

  31. Yoo CB, Jones PA. Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov 2006; 5: 37–50.

    Article  PubMed  CAS  Google Scholar 

  32. Teicher BA, Ara G, Keyes SR, Herbst RS, and Frei E, III, Acute in vivo resistance in high-dose therapy. Clin Cancer Res 1998; 4: 483–491.

    PubMed  CAS  Google Scholar 

  33. St. Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C, Vogelstein B, Kinzler KW. Genes expressed in human tumor endothelium. Science 2000; 289: 1197–1202.

    Article  PubMed  CAS  Google Scholar 

  34. Bagley RG, Rouleau C, Morgenbesser SD, Weber W, Cook BP, Shankara S, Madden SL, Teicher BA. Pericytes from human non-small cell lung carcinomas: an attractive target for anti-angiogenic therapy. Vasc Res 2006; 71: 163–174.

    CAS  Google Scholar 

  35. Nanda A, St. Croix B. Tumor endothelial markers: new targets for cancer therapy. Curr Opin Oncol 2004; 16: 44–49.

    Article  PubMed  CAS  Google Scholar 

  36. Carson-Walter EB, Watkins DN, Nanda A, Vogelstein B, Kinzler K, St. Croix B. Cell surface tumor endothelial markers are conserved in mice and humans. Cancer Res 2001; 61: 6649–6655.

    PubMed  CAS  Google Scholar 

  37. Bagley R, Walter-Yohrling J, Cao X, Weber W, Simons B, Cook BP, Chartrand SD, Wang C, Madden SL, Teicher BA. Endothelial precursor cells as a model of tumor endothelium: characterization and comparison to mature endothelial cells. Cancer Res 2003; 63: 5866–5873.

    PubMed  CAS  Google Scholar 

  38. Garmy-Susini B, Varner JA. Circulating endothelial progenitor cells. Br J Cancer 2005; 93: 855–858.

    Article  PubMed  CAS  Google Scholar 

  39. Modzelewski RA, Davies P, Watkins SC, Auerbach R, Chang M-J, Johnson CS. Isolation and identification of fresh tumor-derived endothelial cells from a murine RIF-1 fibrosarcoma. Cancer Res 1994; 54: 336–339.

    PubMed  CAS  Google Scholar 

  40. Kaufman D, Hanson E, Lewis R, Auerbach R, Thomson J. Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 2001; 98: 10716–10721.

    Article  PubMed  CAS  Google Scholar 

  41. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner J. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964–967.

    Article  PubMed  CAS  Google Scholar 

  42. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner J. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 1999; 85: 221–228.

    PubMed  CAS  Google Scholar 

  43. Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H, Inai Y, Silver M, Isner J. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 1999; 18: 3964–3972.

    Article  PubMed  CAS  Google Scholar 

  44. Lin Y, Weisdorf DJ, Solovey A, Hebbel RP. Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 2000; 105: 71–77.

    Article  PubMed  CAS  Google Scholar 

  45. Rafii S. Circulating endothelial precursors: mystery, reality, and promise. J Clinic Invest 2000; 105: 17–19.

    CAS  Google Scholar 

  46. Peichev M, Naiyer A, Pereira D, Zhu Z, Lane W, Williams M, Oz M, Hicklin D, Witte L, Moore M, Rafii S. Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood 2000; 95: 952–958.

    PubMed  CAS  Google Scholar 

  47. Gill M, Dias S, Hattori K, Rivera, M, Hicklin D, Witte L, Girardi L, Yurt R, Himiel H, Rafii S. Vascular trauma induces rapid but transient mobilization of VEGFR2+AC133+ endothelial precursor cells. Circ Res 2001; 88: 167–174.

    PubMed  CAS  Google Scholar 

  48. Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, Wu Y, Hicklin D, Zhu Z, Hackett N, Crystal R, Moore M, Hajjar K, Manova K, Benezra R, Rafii S. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 2001; 7: 1194–1201.

    Article  PubMed  CAS  Google Scholar 

  49. De Bont E, Guikema J, Scherpeh F, Meeuwsen T, Kamps W, Vellenga E, Bos N. Mobilized human CD34+ hematopoietic stem cells enhance tumor growth in a non-obese diabetic/severe combined immunodeficient mouse. Cancer Res 2001; 61: 7654–7659.

    PubMed  Google Scholar 

  50. Auerbach R, Akhtar N, Lewis L, Shinners BL. Angiogenesis assays: problems and pitfalls. Cancer Metastasis Rev 2000; 19: 167–172.

    Article  PubMed  CAS  Google Scholar 

  51. Bagley RG, Weber W, Rouleau C, Teicher BA. Pericytes and endothelial precursor cells: cellular interactions and contributions to malignancy. Cancer Res 2005; 65: 9741–9750.

    Article  PubMed  CAS  Google Scholar 

  52. Baluk P, Hashizume H, McDonald DM. Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev 2005; 15: 102–111.

    Article  PubMed  CAS  Google Scholar 

  53. von Tell D, Armulik A, Betsholtz C. Pericytes and vascular stability. Exp Cell Res 2006; 312: 623–629.

    Article  CAS  Google Scholar 

  54. Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res 2005; 97: 512–523.

    Article  PubMed  CAS  Google Scholar 

  55. Chantrain CF, Henriet P, Jodele S, Emonard H, Feron O, Courtoy PJ, DeClerck YA, Marbaix E. Mechanisms of pericyte recruitment in tumor angiogenesis: a new role for metalloproteinases. Eur J Cancer 2006; 42: 310–318.

    Article  PubMed  CAS  Google Scholar 

  56. Rajantie I, Ilmonen M, Alminaite A, Ozerdem U, Alitalo K, Salven P. Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood 2004; 104: 2084–2086.

    Article  PubMed  CAS  Google Scholar 

  57. Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 2003; 111: 1287–1295.

    Article  PubMed  CAS  Google Scholar 

  58. Kemp KC, Hows J, Donaldson C. Bone marrow-derived mesenchymal stem cells. Leuk Lymphoma 2005; 46: 1531–1544.

    Article  PubMed  Google Scholar 

  59. Martens TP, See F, Schuster MD, Sondermeijer HP, Hefti MM, Zannettino A, Gronthos S, Seki T, Itescu S. Mesenchymal lineage precursor cells induce vascular network formation in ischemic myocardium. Nat Clin Prac 2006; 3 (suppl 1): S18–S23.

    Article  CAS  Google Scholar 

  60. Hung S-C, Deng W-P, Yang WK, Liu R-S, Lee C-C, Su T-C, Lin R-J, Yang D-M, Chang C-W, Chen W-H, Wei H-J, Gelovani JG. Mesenchymal stem cell targeting of microscopic tumors and tumor stroma development monitored by noninvasive in vivo positron emission tomography imaging. Clin Cancer Res 2005; 11: 7749–7756.

    Article  PubMed  CAS  Google Scholar 

  61. Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J, Chen J, Hentschel S, Vecil G, Dembinski J, Andreeff M, Lang FF. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 2005; 65: 3307–3318.

    PubMed  CAS  Google Scholar 

  62. Rettig WJ, Garin-Chesa P, Healey JH, Su SL, Jaffe EA, Old LJ. Identification of endosialin, a cell surface glycoprotein of vascular endothelial cells in human cancer. Proc Natl Acad Sci USA 1992; 89: 10832–10836.

    Article  PubMed  CAS  Google Scholar 

  63. Christian S, Ahorn H, Koehler A, Eisenhaber F, Rodi H-P, Garin-Chesa P, Park JE, Rettig WJ, Lenter MC. Molecular cloning and characterization of endosialin, a C-type lectin-like cell surface receptor of tumor endothelium. J Biol Chem 2001; 276: 7408–7414.

    Article  PubMed  CAS  Google Scholar 

  64. Peerschke EIB, Gherbrehiwet B. Platelet C1Q receptor interactions with collagen and C1Q coated surfaces. J Immunol 1990; 145: 2984–2988.

    PubMed  CAS  Google Scholar 

  65. Webster SD, Park M, Fonseca MI, Tenner AJ. Structural and functional evidence for microglial expression of C1qRp, the C1q receptor that enhances phagocytosis. J Leukoc Biol 2000; 67: 109–116.

    PubMed  CAS  Google Scholar 

  66. Dean YD, McGreal EP, Akatsu H, Gasque P. Molecular and cellular properties of the rat AA4 antigen, a C-type lectin-like receptor with structural homology to thrombomodulin. J Biol Chem 2000; 275: 34382–34392.

    Article  PubMed  CAS  Google Scholar 

  67. Opavsky R, Haviernik P, Jurkovicova D, Garin MT, Copeland NG, Gilbert DJ, Jenkins NA, Bies J, Garfield S, Pastorekova S, Oue A, Wolff L. Molecular characterization of the mouse TEM 1/endosialin gene regulated by cell density in vitro and expressed in normal tissues in vivo. J Biol Chem 2001; 276: 38795–38807.

    Article  PubMed  CAS  Google Scholar 

  68. Nanda A, Karim B, Peng Z, Liu G, Qiu W, Gan C, Vogelstein B, St. Croix B, Kinzler KW, Huso DL. Tumor endothelial marker 1 (TEM1) functions in the growth and progression of abdominal tumors. Proc Natl Acad Sci USA 2006; 103: 3351–3356.

    Article  PubMed  CAS  Google Scholar 

  69. Davies G, Cunnick GH, Mansel RE, Mason MD, Jiang WG. Levels of expression of endothelial markers specific to tumor-associated endothelial cells and their correlation with prognosis in patients with breast cancer. Clin Exp Metastasis 2004; 21: 31–37.

    Article  PubMed  CAS  Google Scholar 

  70. Koon HB, Bubley GJ, Pantanowitz L, Masiello D, Smith B, Crosby K, Proper J, Weeden W, Miller TE, Chatis P, Egorin MJ, Tahan SR, Dezube BJ. Imatinib-induced regression of AIDS-related Kaposi’s sarcoma. J Clin Oncol 2005; 23: 982–989.

    Article  PubMed  CAS  Google Scholar 

  71. Wang H-W, Trotter MWB, Lagos D, Bourboulia D, Henderson S, Makinen T, Elliman S, Flanagan AM, Alitalo K, Boshoff C. Kaposi sarcoma herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma. Nat Genet 2004; 36: 687–693.

    Article  PubMed  CAS  Google Scholar 

  72. Dolznig H, Schweifer N, Puri C, Kraut N, Rettig WJ, Kerjaschki D, Garin-Chesa P. Characterization of cancer stroma markers: in silico analysis of an mRNA expression database for fibroblast activation protein and endosialin. Cancer Immun 2005; 5: 10–19.

    PubMed  Google Scholar 

  73. Rupp C, Dolznig H, Puri C, Schweifer N, Sommergruber W, Kraut N, Rettig WJ, Kerjaschki D, Garin-Chesa P. Laser capture microdissection of epithelial cancers guided by antibodies against fibroblast activation protein and endosialin. Diagn Mol Pathol 2006; 15: 35–42.

    Article  PubMed  CAS  Google Scholar 

  74. Tentori L, Vergati M, Muzi A, Levati L, Ruffini F, Forini O, Vernole P, Lacal PM, Graziani G. Generation of an immortalized human endothelial cell line as a model of neovascular proliferating endothelial cells to assess chemosensitivity to anti cancer drugs. Int J Oncol 2005; 27: 525–535.

    PubMed  CAS  Google Scholar 

  75. Huber MA, Kraut N, Schweifer N, Dolznig H, Peter RU, Schibert RD, Scharffetter-Kochanek K, Pehamberger H, Garin-Chesa P. Expression of stromal cell markers in distinct compartments of human skin. J Cutan Pathol 266; 33: 145–155.

    Google Scholar 

  76. Conejo-Garcia JR, Buckanovich RJ, Benencia F, Courreges MC, Rubin SC, Carroll RG, Coukos G. Vascular leukocytes contribute to tumor vascularization. Blood 2005; 105: 679–681.

    Article  PubMed  CAS  Google Scholar 

  77. Brady J, Neal J, Sadakar N, Gasque P. Human endosialin (tumor endothelial marker 1) is abundantly expressed in highly malignant and invasive brain tumors. J Neuropathol Exp Neurol 2004; 63: 1274–1283.

    PubMed  CAS  Google Scholar 

  78. MacFayden JR, Haworth O, Roberston D, Hardie D, Webster M-T, Morris HR, Panico M, Sutton-Smith M, Dell A, van der Greer P, Wienke D, Buckley CD, Isacke CM. Endosialin (TEM1, CD248) is a marker of stromal fibroblasts and is not selectively expressed on tumor endothelium. FEBS Lett 2005; 579: 2569–2575.

    Article  CAS  Google Scholar 

  79. Marty C, Langer-Machova Z, Sigrist S, Schott, Schwendener RA, Ballmer-Hofer K. Isolation and characterization of a scFv antibody specific for tumor endothelial marker 1 (TEM1), a new reagent for targeted tumor therapy. Cancer Lett 2006; 235: 298–308.

    Google Scholar 

  80. Zelensky AN, Gready JE. The C-type lectin-like domain superfamily. FEBS J 2005; 272: 6179–6217.

    Article  PubMed  CAS  Google Scholar 

  81. Zelensky AN, Gready JE. C-type lectin-like domains in Fugu rubripes. BMC Genomics 2004; 5: 51–73.

    Article  PubMed  CAS  Google Scholar 

  82. Cambi A, Koopman M, Figdor CG. How C-type lectins detect pathogens. Cell Microbiol 2005; 7: 481–488.

    Article  PubMed  CAS  Google Scholar 

  83. van Kooyk Y, Engering A, Lekkerkerker AN, Ludwig IS, Geijtenbeek TBH. Pathogens use carbohydrates to escape immunity induced by dendritic cells. Curr Opin Immunol 2004; 16: 488–493.

    Article  PubMed  CAS  Google Scholar 

  84. Vlachoyiannopoulos PG, Samarkos M. Peripheral vascular disease in antiphospholipid syndrome. Thromb Res 2004; 114: 509–519.

    Article  PubMed  CAS  Google Scholar 

  85. Van de Wouwer M, Collen D, Conway EM. Thrombomodulin-protein C-EPCR system: integrated to regulate coagulation and inflammation. Arterioscler Thromb Vasc Biol 2004; 24: 1374–1383.

    Article  PubMed  CAS  Google Scholar 

  86. Hanly AM, Hayanga A, Winter DC, Bouchier-Hayes DJ. Thrombomodulin: tumor biology and prognostic implications. J Cancer Surg 2005; 31: 217–220.

    CAS  Google Scholar 

  87. Lee HK, Bae HR, Park HK, Seo IA, Lee EY, Suh DJ, Park HT. Cloning, characterization and neuronal expression profiles of tumor endothelial marker 7 in the rat brain. Brain Res Mol Brain Res 2005; 136: 189–198.

    Article  PubMed  CAS  Google Scholar 

  88. Wang X-Q, Sheibani N, Watson JC. Modulation of tumor endothelial cell marker 7 expression during endothelial cell capillary morphogenesis. Microvasc Res 2005; 70: 189–197.

    Article  PubMed  CAS  Google Scholar 

  89. Kim S, Wadsworth WG. Positioning of longitudinal nerves in C. elegans by nidogen. Science 2000; 288: 150–154.

    Article  PubMed  CAS  Google Scholar 

  90. Yekian FD, Edgeworth NA, Dong LJ, Chung AE, Armant DR. J Cell Biol 1993; 121: 923.

    Article  Google Scholar 

  91. Nicosia RF, Bonanno E, Smith M, Yurchenco P. Modulation of angiogenesis in vitro by laminin–entactin complex. Dev Biol 1994; 164: 197–206.

    Article  PubMed  CAS  Google Scholar 

  92. Sasaki T, Gohring W, Pan TC, Chu ML, Timpl R. Binding of mouse and human fibulin-2 to extracellular matrix ligands. J Mol Biol 1995; 254: 892–899.

    Article  PubMed  CAS  Google Scholar 

  93. Hopf M, Gohring W, Kohfeldt Y, Yamada Y, Timpl R. Recombinant domain IV of perlecan binds to nidogens, laminin–nidogen complex, fibronectin, fibulin-2 and heparin. J Biochem 1999; 259: 917–925.

    CAS  Google Scholar 

  94. Tomte LT, Annatshah Y, Schluter NK, Miosge N, Herken R, Quondamatteo F. Hematopoietic cells are a source of nidogen-1 and nidogen-2 during mouse liver development. J Histochem Cytochem 2006; 54: 593–604.

    Article  PubMed  CAS  Google Scholar 

  95. Lee HK, Seo IA, Park HK, Park HT. Identification of the basement membrane protein nidogen as a candidate ligand for tumor endothelial marker 7 in vitro and in vivo. FEBS Lett 2006; 580: 2253–2257.

    Article  PubMed  CAS  Google Scholar 

  96. Potiron V, Roche J. Class 3 semaphorin signaling: the end of a dogma. Science STKE 2005; 285/pe24.

    Google Scholar 

  97. Chedotal A, Kerjan G, Moreau-Fauvarque C. The brain within the tumor: new roles for axon guidance molecules in cancer. Cell Death Differ 2005; 12: 1044–1056.

    Article  PubMed  CAS  Google Scholar 

  98. Kruger RP, Aurandt J, Guan K-L. Semaphorins command cells to move. Nat Rev Mol Cell Biol 2005; 6: 789–800.

    Article  PubMed  CAS  Google Scholar 

  99. Comoglio PM, Tamagnone L, Boccaccio C. Plasminogen-related growth factor and semaphorin receptors: a gene superfamily controlling invasive growth. Exp Cell Res 1999; 253: 88–99.

    Article  PubMed  CAS  Google Scholar 

  100. Giordano S, Corso S, Conrotto P, Artgiani S, Gilestro G, Barberis D, Tamagnone L, Comoglio PM. The semaphorin 4D receptor controls invasive growth by coupling with Met. Nat Cell Biol 2002; 4: 720–724.

    Article  PubMed  CAS  Google Scholar 

  101. Gu C, Yoshida Y, Livet J, Reimert DV, Mann F, Merte J, Henderson CE, Jessell TM, Kolodkin AL, Ginty DD. Semaphorin 3E and plexin-D1 control vascular pattern independently of neuropilins. Science 2005; 307: 265–268.

    Article  PubMed  CAS  Google Scholar 

  102. Serini G, Valdembri D, Zanivan S, Morterra G, Burkhardt C, Caccavari F, Zammataro L, Primo L, Tamagnone L, Logan M, Tessier-Lavigne M, Taniguchi M, Puschel AW, Bussolino F. Class 3 semaphorins control vascular morphogenesis by inhibiting integrin function. Nature 2003; 424: 391–397.

    Article  PubMed  CAS  Google Scholar 

  103. Tamagnone L, Artigiani S, Chen H, He Z, Ming GI, Song H, Chedotal A, Winberg ML, Goodman CS, Poo M, Tessier-Lavigne M, Comoglio PM. Plexins are a large family of receptors for transmembrane, secreted and GPI-anchored semaphorins in vertebrates. Cell 1999; 99: 71–80.

    Article  PubMed  CAS  Google Scholar 

  104. Comeau MR, Johnson R, DuBose RF, Ptersen M, Gearing P, VandenBos T, Park L, Farrah T, Buller RM, Cohen JI, Strockbine LD, Rauch C, Spriggs MK. A poxvirus-encoded semaphorin induces cytokine production from monocytes and binds to a novel cellular semaphorin receptor, VESPR. Immunity 1998; 8: 473–482.

    Article  PubMed  CAS  Google Scholar 

  105. Fuh G, Garcia KC, de Vos AM. The interaction of neuropilin-1 with vascular endothelial growth factor and its receptor flt-1. J Biol Chem 2000; 275: 26690–26695.

    PubMed  CAS  Google Scholar 

  106. Gu C, Limberg BJ, Whitaker GB, Perman B, Leahy DJ, Rosenbaum JS, Ginty DD, Kolodkin AL. Characterization of neuropilin-1 structural features that confer binding to semaphorin 3A and vascular endothelial growth factor 165. J Biol Chem 2002; 277: 18069–18076.

    Article  PubMed  CAS  Google Scholar 

  107. Neufeld G, Cohen T, Shraga N, Lange T, Kessler O, Herzog Y. The neuropilins: multifunctional semaphorin and VEGF receptors that modulate axon guidance and angiogenesis. Trends Cardiovasc Med 2002; 12: 13–19.

    Article  PubMed  CAS  Google Scholar 

  108. Trusolino L, Comoglio PM. Scatter-factor and semaphorin receptors: cell signaling for invasive growth. Nat Rev Cancer 2002; 2: 289–300.

    Article  PubMed  CAS  Google Scholar 

  109. Diamond RH, Cressman DE, Laz TM, Abrams CA, Taub R. PRL-1, a unique nuclear protein tyrosine phosphatase, affects cell growth. Mol Cell Biol 1994; 14: 3752–3762.

    PubMed  CAS  Google Scholar 

  110. Zeng Q, Hong W, Tan YH. Mouse PRL-2 and PRL-3, two potentially prenylated protein tyrosine phosphatases homologous to PRL-1. Biochem Biophys Res Commun 1998; 244: 421–427.

    Article  PubMed  CAS  Google Scholar 

  111. Matter WF, Estridge T, Zhang C, Belagaje R, Stancato L, Dixon J, Johnson B, Bloem L, Pickard T, Donaghue M, Acton S, Jeyaseelan R, Kadambi V, Vlahos CJ. Role of PRL-3, a human muscle-specific tyrosine phosphatase, in angiotensin-II signaling. Biochem Biophys Res Commun 2001; 283: 1061–1068.

    Article  PubMed  CAS  Google Scholar 

  112. Zhou H, Gallina M, Mao H, Nietlispach D, Betz SF, Fetrow JS, Domaille PJ. 1H, 13C and 15N resonance assignments and secondary structure of the human protein tyrosine phosphatase, PRL-2. J Biomol NMR 2003; 27(4): 397–398.

    Article  PubMed  CAS  Google Scholar 

  113. Pathak MK, Dhawan D, Lindner DJ, Borden EC, Farver C, Yi T. Pentamidine is an inhibitor or PRL phosphatases with anticancer activity. Mol Cancer Ther 2002; 1(14), 1255–1264.

    PubMed  CAS  Google Scholar 

  114. Ostman A, Hellberg C, Bohmer FD. Protein-tyrosine phosphatases and cancer. Nat Rev Cancer 2006; 6: 307–320.

    Article  PubMed  CAS  Google Scholar 

  115. Haber B, Naji L, Cressman D, Taub R. Coexpression of liver-specific and growth-induced genes in perinatal and regenerating liver: attainment and maintenance of the differentiated state during rapid proliferation. Hepatology 1995; 22: 906–914.

    PubMed  CAS  Google Scholar 

  116. Takano S, Fukuyama M, Kimura J, Xue J, Ohashi H, Fujita J. PRL-1, a protein tyrosine phosphatase, is expressed in neurons and oligodendrocytes in the brain and induced in the cerebral cortex following transient forebrain ischemia. Mol Brain Res 1996; 40: 105–115.

    Article  PubMed  CAS  Google Scholar 

  117. Rundle CH, Kappen C. Developmental expression of the murine PRL-1 protein tyrosine phosphatase gene. J Exp Zool 1999; 283: 612–617.

    Article  PubMed  CAS  Google Scholar 

  118. Kong W, Swain GP, Li S, Diamond RH. PRL-1 PTPase expression is developmentally regulated with tissue-specific patterns in epithelial tissues. Am J Physiol Gastrointest Liver Physiol 2000; 279: G613–G621.

    PubMed  CAS  Google Scholar 

  119. Ito T, Noguchi Y, Udaka N, Kitamura H, Satoh S. Glucose transporter expression in developing fetal lungs and lung neoplasms. Histol Histopathol 1999; 14: 895–904.

    PubMed  CAS  Google Scholar 

  120. Waltzer L, Bienz M. The control of beta-catenin and TCF during embryonic development and cancer. Cancer Metastasis Rev 1999; 18: 231–246.

    Article  PubMed  CAS  Google Scholar 

  121. Krupp G, Bonatz G, Parwaresch R. Telomerase, immortality and cancer. Biotechnol Annu Rev 2000; 6: 103–140.

    Article  PubMed  CAS  Google Scholar 

  122. Meszoely IM, Means AL, Scoggins CR, Leach SD. Developmental aspects of early pancreatic cancer. Cancer J 2001; 7: 242–250.

    PubMed  CAS  Google Scholar 

  123. Teicher BA. Malignant cells, directors of the malignant process: role of transforming growth factor-beta. Cancer Metastasis Rev 2001; 20: 133–143.

    Article  PubMed  CAS  Google Scholar 

  124. Sood AK, Fletcher MS, Hendrix MJ. The embryonic-like properties of aggressive human tumor cells. J Soc Gynecol Investig 2002; 9: 2–9.

    Article  PubMed  Google Scholar 

  125. Werner SR, Lee PA, Cummings OW, Randall SK, Crowell DN, Crowell PL. PRL-1 protein tyrosine phosphatase accelerates progression into S phase and is found at elevated levels in human ovarian, breast, pancreatic, colon and prostate cancers. Proc Am Assoc Cancer Res 95th Ann Mtg, Abstr 818, 2004.

    Google Scholar 

  126. Stephens BJ, Farnsworth AL, Munoz RM, Warner SL, Bearss DJ, Von Hoff DD, Han H. Lipid phosphatase activity of PRL-1. Proc Am Assoc Cancer Res 95th Ann Mtg, Abstr 865, 2004.

    Google Scholar 

  127. Diehl AM. Liver regeneration. Frontiers in Biosciences 2002; 7: 301–314.

    Article  Google Scholar 

  128. Diamond RH, Peters C, Jung SP, Greeenbaum LE, Haber BA, Silberg DG, Traber PG, Taub R. Expression of PRL-1 nuclear PTPase is associated with proliferation in liver but with differentiation in intestine. Am J Physiol 1996; 271: G121–G129.

    PubMed  CAS  Google Scholar 

  129. Wang J, Kirby CE, Herbst R. The tyrosine phosphatase PRL-1 localizes to the endoplasmic reticulum and the mitotic spindle and is required for normal mitosis. J Biol Chem 2002; 227: 46659–46668.

    Article  CAS  Google Scholar 

  130. Wang Q, Holmes DIR, Powell SM, Lu QL, Waxman J. Analysis of stromal–epithelial interactions in prostate cancer identifies PTPCAAX2 as a potential oncogene. Cancer Lett 2002; 175: 63–69.

    Article  PubMed  CAS  Google Scholar 

  131. Cates CA, Michael RL, Stayrook KR, Harvey KA, Burke YD, Randall SK, Crowell PL, Crowell DN. Prenylation of oncogenic human PTP(CAAX) protein tyrosine phosphatases. Cancer Lett 1996; 110: 49–55.

    Article  PubMed  CAS  Google Scholar 

  132. Rouleau C, Roy A, St Martin T, Dufault MR, Boutin P, Liu D, Zhnag M, Puorro-Radzwill K, Rulli L, Reczek D, Bagley R, Byrne A, Weber W, Roberts B, Klinger K, Brondyk W, Nacht M, Madden S, Burrier R, Shankara S, Teicher BA. Protein tyrosine phosphatase PRL-3 in malignant and endothelial cells: expression and function. Mol Cancer Ther 2006; 5: 219–29.

    Article  PubMed  CAS  Google Scholar 

  133. Zeng Q, Dong J-M, Guo K, Li J, Tan H-X, Koh V, Pallen CJ, Manser E, Hong W. PRL-3 and PRL-1 promote cell migration, invasion and metastasis. Cancer Res 2003; 63: 2716–2722.

    PubMed  CAS  Google Scholar 

  134. Gou K, Li J, Tang JP, Koh V, Gan BQ, Zeng Q. Catalytic domain of PRL-3 plays an essential role in tumor metastasis: formation of PRL-3 tumors inside the blood vessels. Cancer Biol Ther 2004; 3: XX.

    Google Scholar 

  135. Miskad UA, Semba S, Kato H, Yokozaki H. Expression of PRL-3 phosphatase in human gastric carcinomas: close correlation with invasion and metastasis. Pathobiology 2004; 71: 176–184.

    Article  PubMed  CAS  Google Scholar 

  136. Wu X, Zeng H, Zhang X, Zhao Y, Sha H, Ge X, Zhang M, Gao X, Xu Q. Phosphatase regenerating liver-3 promotes motility and metastasis of mouse melanoma cells. Am J Pathol 2004; 164: 2039–2054.

    Google Scholar 

  137. Peng L, Ning J, Meng L, Shou C. The association of the expression level of protein tyrosine phosphatase PRL-3 protein with liver metastasis and prognosis of patents with colorectal cancer. J Cancer Res Clin Oncol 2004; 130: 521–526.

    Article  PubMed  CAS  Google Scholar 

  138. Lim KA, Song JS, Jee J, Sheen MR, Lee C, Lee TG, Ro S, Cho JM, Lee W, Yamazaki T, Jeon YH, Cheong C. Structure of human PRL-3, the phosphatase associated with cancer metastasis. FEBS Lett 2004; 565: 181–187.

    Article  CAS  Google Scholar 

  139. Kozlov G, Cheng J, Ziomek E, Banville D, Gehring K, Ekiel I. Structural insights into molecular function of the metastasis-associated phosphatase PRL-3. Biol Chem 2004; 279: 11882–11889.

    Article  CAS  Google Scholar 

  140. Saha S, Bardelli A, Buckhaults P, Velculescu VE, Rago C, St. Croix B, Romans KE, Choti MA, Lengauer C, Kinzler KW, Vogelstein B. A phosphatase associated with metastasis of colorectal cancer. Science 2001; 294: 1343–1346.

    Article  PubMed  CAS  Google Scholar 

  141. Bardelli A, Saha S, Sager J, Romans KE, Xin B, Markowitz SD, Lengauer C, Velulescu VE, Kinzler KW, Vogelstein B. PRL-3 expression in metastatic cancers. Clin Cancer Res 2003; 9: 5607–5613.

    Google Scholar 

  142. Kato H, Semba S, Miskad UA, Seo Y, Kasuga M, Yokozaki H. High expression of PRL-3 promotes cancer cell motility and liver metastasis in human colorectal cancer: a predictive molecular marker of metachronous liver and lung metastases. Clin Cancer Res 2004; 10: 7318–7328.

    Article  PubMed  CAS  Google Scholar 

  143. Peng, L, Ning J, Meng L, Shou C. The association of the expression level of protein tyrosine phosphatase PRL-3 protein with liver metastasis and prognosis of patients with colorectal cancer. J Cancer Res Clin Oncol 2005; 130: 521–526.

    Google Scholar 

  144. Leibovitz A, Stinson JC, McCombs WB, III, McCoy CE, Mazur KC, Mabry ND. Classification of human colorectal adenocarcinoma cell lines. Cancer Res 1976; 36: 4562–4569.

    PubMed  CAS  Google Scholar 

  145. Aden DP, Fogel A, Plotkin S, Damjanov I, Knowles BB. Controlled synthesis of HBsAg in a differentiated human liver carcinoma-derived cell line. Nature 1979; 282: 615–616.

    Article  PubMed  CAS  Google Scholar 

  146. Sugimoto T, Tatsumi E, Kemshead JT, Helson L, Green AA, Minowada J. Determination of cell surface membrane antigens common to both human neuroblastoma and leukemia-lymphoma cell lines by a panel of 38 monoclonal antibodies. J Natl Cancer Inst 1984; 73: 51–57.

    PubMed  CAS  Google Scholar 

  147. Soule HD, Vazguez J, Long A, Albert S, Brennan M. A human cell line from a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst 1973; 51: 1409–1416.

    PubMed  CAS  Google Scholar 

  148. Kim K-A, Song J-S, Jee JG, Sheen MR, Lee C, Lee TG, Ro S, Cho JM, Lee W, Yamazaki T, Jeon YH, Cheong C. Structure of human PRL-3, the phosphatase associated with cancer metastasis. FEBS Lett 2004; 565: 181–187.

    Article  PubMed  CAS  Google Scholar 

  149. Peng L, Jin G, Wang L, Guo J, Meng L, Shou C. Identification of integrin a1 as an interacting protein of protein tyrosine phosphates PRL-3. Biochem Biophys Res Commun 2006; 342: 179–183.

    Article  PubMed  CAS  Google Scholar 

  150. Hofmeister V, Vetter C, Schrama D, Brocker E-B, Becker JC. Tumor stroma-associated antigens for anti-cancer immunotherapy. Cancer Immunol Immunother 2006; 55: 481–494.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Teicher, B.A. (2008). Newer Vascular Targets. In: Teicher, B.A., Ellis, L.M. (eds) Antiangiogenic Agents in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-184-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-184-0_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-870-6

  • Online ISBN: 978-1-59745-184-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics